Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A+B=(a+b-5)+(-b-c+1)=a+b-5-b-c+1=a-c-4$
$C+D=b-c-4+b-c=2b-4$
Do đó không đủ cơ sở để kết luận $A+B=C+D$ bạn nhé.
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5
\(A=\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-c\right)\left(b-d\right)\left(c-d\right)\)
+Chứng minh chia hết cho 3
1 số bất kì khi chia cho 3 sẽ có 1 trong 3 số dư: 0; 1; 2
=> Trong 4 số a, b, c, d tồn tại ít nhất 2 số có cùng số dư khi chia cho 3 (cùng dư 0, hoặc 1, hoặc 2)
=> Hiệu 2 số đó chia hết cho 3 (chẳng hạn a và b cùng dư 2 khi chia cho 3 => a - b chia hết cho 3)
=> Tích "dài dài" chia hết cho 3
+Chứng minh chia hết cho 4:
+TH1: 4 số đều chẵn
=> Tất cả các nhân tử đều chẵn (số chẵn trừ số chẵn = số chẵn)
=> A chia hết cho 2.2.2.2.2.2 = 64
=> A chia hết cho 4.
+TH2: 3 số chẵn và 1 số lẻ (giả sử a, b, c chẵn và d lẻ).
=> (a-b); (a-c); (b-c) đều chẵn.
=> A chia hết cho 2.2.2 = 8.
=> A chia hết cho 4.
+TH3: 2 số chẵn và 2 số lẻ (giả sử a và b chẵn; c và lẻ)
=> (a-b) và (c-d) đều chẵn (số lẻ trừ số lẻ = số chẵn)
=> A chia hết cho 2.2 = 4
TH4: 1 số chẵn và 3 số lẻ (giả sử a, b, c lẻ và d chẵn).
=> (a-b); (a-c); (b-c) đều chẵn. (lẻ trừ lẻ = chẵn)
=> A chia hết cho 2.2.2 = 8.
=> A chia hết cho 4.
+TH5: 4 số đều lẻ
=> Tất cả các nhân tử đều chẵn (lẻ trừ lẻ = chẵn)
=> A chia hết cho 2.2.2.2.2.2 = 64
=> A chia hết cho 4.
=> A luôn chia hết cho 4.
Vậy: A luôn chia hết cho cả 3 và 4.
\(\frac{a}{b}=\frac{c}{d}\)
Ta có : \(\frac{ad}{bd}+\frac{bc}{bd}=\frac{ad+bc}{bd+bd}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)
\(a,\)đặt \(\frac{a}{b}=\frac{c}{d}=k\left(1\right)\)
\(\frac{a}{b}=k\Rightarrow a=b.k\)
\(\frac{c}{d}=k\Rightarrow c=d.k\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{b.k+d.k}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(đpcm\right)\)
A + B = (a + b - 5) + (-b - c + 1) = a + b - 5 - b - c + 1 = a + (b - b) - c + (-5 + 1)
= a - c - 4.
C - D = (b - c - 4) - (b - a) = b - c - 4 - b + a = (b - b) - c + a - 4
= a - c - 4.
Vậy A + B = C - D.
Ta có \(\frac{a}{a+b+c}\)> \(\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+a}\)> \(\frac{b}{b+c+a+d}\)
tương tự ....
suy ra cái đề > 1 dpcm
1. (a-b+c) -(a+c) = a-b+c-a-c = -b
2. (a+b) - (b-a) +c = a+b -b +a +c =2a+c
3. -(a+b-c)+(a-b-c) = -a-b+c a-b-c = -2b
4. a(b+c) -a(b+d) = a(b+c-b-d) = a( c-d)
5. a(b-c) +a(d+c) = a(b-c+d+c) = a(b+d)
1.= a-b+c-a-c= (a-a)-b+(c-c)=0-b+0=-b
2.=a+b-b+a+c=a+a+b-b+c=2a+c
3.=-a-b+c+a-b-c=-a+a-(b+b)+c-c=-2b
4.=ab+ac-ab-ad=ac-ad=a(c-d)
5.=ab-ac+ad+ac=(-ac+ac)+ab+ad=ab+ad=a(b+d)
tk mik nha, chúc bn học tốt
A+B=a+b-5+(-b-c+1)=a+b-5-b-c+1=a-c-4 (1)
C-D=b-c-4-(b-a)=b-c-4-b+a=a-c-4 (2)
từ (1) và (2) suy ra A+B=C-D
Em cảm ơn cô