K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

Tôi giải hơi dài 1 tí , anh hãy cố gắng đọc:

a) 571999 ta xét 71999
Ta có: 71999 = (74)499.73 = 2041499. 343 Suy ra chữ số tận cùng bằng 3
‏Vậy số 571999 có chữ số tận cùng là : 3
b) 931999 ta xét 31999
Ta có: 31999 = (34)499. 33 = 81499.27
Suy ra chữ số tận cùng bằng 7
2. Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Theo câu 1b ta có: 9999931999 có chữ số tận cùng là 7
Tương tự câu 1a ta có: (74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5
.

Nguồn : Câu hỏi tương tự

13 tháng 5 2016

làm sao chia hết đc bn ơi, nếu là trừ mới chia hết

24 tháng 4 2017

Ta có:A= 9999931999- 5555571997

= 9999931998 . 999993 - 5555571996 . 555557

= ( 9999932)999 . 999993- ( 555552)998 . 555557

= (....9)999 . 999993 - (....9)998 . 555557

= (....9) . 999993 - (....1) . 555557

= (...7) - (...7)

= (...0)

Chữ số tận cùng của A= 0

=> A chia hết cho 5 ( đpcm)

Chúc bạn học tốt nhoa...!hehe

24 tháng 4 2017

\(\)Ta có :

\(A=999993^{1999}-555557^{1997}\)

\(A=999993^{1998}.999993^1-555557^{1996}.555557^1\)

\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)

\(A=\left(......9\right).999993-\left(....1\right).555557\)

\(A=\left(....7\right)-\left(...7\right)=\left(...0\right)\)

\(\Rightarrow\) Chữ số tận cùng của A là \(0\)

\(\Rightarrow A⋮5\)

~ Chúc bn học tốt ~

14 tháng 2 2016

 9999931993 có tận cùng là 7

5555571997 có tận cùng là 7

-> A có tận cùng là 0 -> a chia hết cho 5

ủng hộ mình nhé ☺

14 tháng 2 2016

9999931999ta xet 31999

31999=31996.33=(34)499.27=81499.27

81499co chu so tan cung la 1 nen 81499.27 co chu so tan cung la 7

vay 9999931999co chu so tan cung la 7

5555571997 ta xet 71997

71997=71996.7=(74)499.7=2401499.72401 

2401499co chu so tan cung la 1 nen 2401499.7 co chu so tan cung la 7

vay 5555571997 co chu so tan cung la 7

ta co 9999931999-5555571997co chu so tan cung la 0

suy ra A chia het cho 5

19 tháng 2 2016

a)        57^1999 = 57^1996+3 = 57^1996.57^3 = 57^4.499.57^3

 = (57^4)^499.57^3 = (...1)^499.57^3 = (...1).185193 = (...3)

            Vậy 57^1999 có chữ số tận cùng là 3

29 tháng 1 2017

Ta có:

\(A=999993^{1999}-555557^{1997}\)

\(A=999993^{1998}.999993-555557^{1996}.555557\)

\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)

\(A=\overline{\left(.....9\right)}^{999}.999993-\overline{\left(.....1\right)}.555557\)

\(A=\overline{\left(.....7\right)}-\overline{\left(.....7\right)}\)

\(A=\overline{\left(.....0\right)}\)

Vì A có tận cùng là 0

\(\Rightarrow A⋮5\) (Đpcm)

Ta có :

A=999993^{1999}-555557^{1997}A=9999931999−5555571997

=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557

=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557

=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557

=\left(....7\right)-\left(....7\right)=(....7)−(....7)

=\left(....0\right)⋮5=(....0)⋮5

\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)

26 tháng 12 2014

999993^1 tận cùng là 3 
999993^2 ....................9 
999993^3 ....................7 
999993^4 ....................1 
999993^5 ....................3 
Vậy 999993^(m+4k) và 999993^m có chữ số tận cùng giống nhau ---> chữ số tận cùng của 999993^1999 = 999993^(3 + 4.499) là 7 
Làm tương tự sẽ thấy chữ số tận cùng của 555557^1997 cũng là 7 ---> chữ số tận cùng của A là 0 ---> A chia hết cho 5 

Hello bạn ^_^"

Có : 

+) 9999931999 = ...31999 = ...31996 x ...33 = (...34)499 ...33 = ...1499 x ...27 = ...1 x ...7 = ...7

+) 5555571997 = ...71996 x ...71 = (...74)499 x ...7 = ...1499 x ...7 = ...1 x ...7 = ...7

Ta có : 9999931999 - 5555571997 = ...7 - ...7 = ...0 \(⋮\)5

Vậy ta có điều phải chứng minh !!!

Okê, số có tận cùng là 3 hoặc 7 khi lũy thừa lên 4 sẽ có số tận cùng là 1.

VD :

     4645396 = (...34)24 = ...124 = ...1

nhận thấy:
999993^1999 có chữ số tận cùng là 7 ( vì 1999 : 4 dư 3. ứng với 3 3 = 27 )
555557^1997.có chữ số tận cùng là 7 ( vì 1997 : 4 dư 1. ứng với 7 1 = 7 )
=> 999993^1999 - 555557^1997 có chữ số tận cùng là 0 =>Hiệu chia hết cho 5

Tick nha 

17 tháng 1 2016

Ta có: 9999931999=(...3)499.4+3

                         =[(...3)4]499.(...3)3

                         =(...1)499.(...7)

                         =(...1).(...7)

                         =(...7)

Ta có: 5555571997=(...7)4.499+1

                           =[(...7)4]499.(...7)1

                          =(...1)499.(...7)

                          =(...1).(...7) 

                         =(...7)

Vậy A=(...7)-(...7)=(...0)

Mà các số có CSTC là 0 thì chia hết cho 5

=>A chia hết cho 5(đpcm)