Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A= 9999931999- 5555571997
= 9999931998 . 999993 - 5555571996 . 555557
= ( 9999932)999 . 999993- ( 555552)998 . 555557
= (....9)999 . 999993 - (....9)998 . 555557
= (....9) . 999993 - (....1) . 555557
= (...7) - (...7)
= (...0)
Chữ số tận cùng của A= 0
=> A chia hết cho 5 ( đpcm)
Chúc bạn học tốt nhoa...!
\(\)Ta có :
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993^1-555557^{1996}.555557^1\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\left(......9\right).999993-\left(....1\right).555557\)
\(A=\left(....7\right)-\left(...7\right)=\left(...0\right)\)
\(\Rightarrow\) Chữ số tận cùng của A là \(0\)
\(\Rightarrow A⋮5\)
~ Chúc bn học tốt ~
9999931993 có tận cùng là 7
5555571997 có tận cùng là 7
-> A có tận cùng là 0 -> a chia hết cho 5
ủng hộ mình nhé ☺
9999931999ta xet 31999
31999=31996.33=(34)499.27=81499.27
81499co chu so tan cung la 1 nen 81499.27 co chu so tan cung la 7
vay 9999931999co chu so tan cung la 7
5555571997 ta xet 71997
71997=71996.7=(74)499.7=2401499.72401
2401499co chu so tan cung la 1 nen 2401499.7 co chu so tan cung la 7
vay 5555571997 co chu so tan cung la 7
ta co 9999931999-5555571997co chu so tan cung la 0
suy ra A chia het cho 5
a) 57^1999 = 57^1996+3 = 57^1996.57^3 = 57^4.499.57^3
= (57^4)^499.57^3 = (...1)^499.57^3 = (...1).185193 = (...3)
Vậy 57^1999 có chữ số tận cùng là 3
Ta có:
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993-555557^{1996}.555557\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\overline{\left(.....9\right)}^{999}.999993-\overline{\left(.....1\right)}.555557\)
\(A=\overline{\left(.....7\right)}-\overline{\left(.....7\right)}\)
\(A=\overline{\left(.....0\right)}\)
Vì A có tận cùng là 0
\(\Rightarrow A⋮5\) (Đpcm)
Ta có :
A=999993^{1999}-555557^{1997}A=9999931999−5555571997
=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557
=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557
=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557
=\left(....7\right)-\left(....7\right)=(....7)−(....7)
=\left(....0\right)⋮5=(....0)⋮5
\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)
999993^1 tận cùng là 3
999993^2 ....................9
999993^3 ....................7
999993^4 ....................1
999993^5 ....................3
Vậy 999993^(m+4k) và 999993^m có chữ số tận cùng giống nhau ---> chữ số tận cùng của 999993^1999 = 999993^(3 + 4.499) là 7
Làm tương tự sẽ thấy chữ số tận cùng của 555557^1997 cũng là 7 ---> chữ số tận cùng của A là 0 ---> A chia hết cho 5
Hello bạn ^_^"
Có :
+) 9999931999 = ...31999 = ...31996 x ...33 = (...34)499 x ...33 = ...1499 x ...27 = ...1 x ...7 = ...7
+) 5555571997 = ...71996 x ...71 = (...74)499 x ...7 = ...1499 x ...7 = ...1 x ...7 = ...7
Ta có : 9999931999 - 5555571997 = ...7 - ...7 = ...0 \(⋮\)5
Vậy ta có điều phải chứng minh !!!
Okê, số có tận cùng là 3 hoặc 7 khi lũy thừa lên 4 sẽ có số tận cùng là 1.
VD :
4645396 = (...34)24 = ...124 = ...1
nhận thấy:
999993^1999 có chữ số tận cùng là 7 ( vì 1999 : 4 dư 3. ứng với 3 3 = 27 )
555557^1997.có chữ số tận cùng là 7 ( vì 1997 : 4 dư 1. ứng với 7 1 = 7 )
=> 999993^1999 - 555557^1997 có chữ số tận cùng là 0 =>Hiệu chia hết cho 5
Tick nha
Ta có: 9999931999=(...3)499.4+3
=[(...3)4]499.(...3)3
=(...1)499.(...7)
=(...1).(...7)
=(...7)
Ta có: 5555571997=(...7)4.499+1
=[(...7)4]499.(...7)1
=(...1)499.(...7)
=(...1).(...7)
=(...7)
Vậy A=(...7)-(...7)=(...0)
Mà các số có CSTC là 0 thì chia hết cho 5
=>A chia hết cho 5(đpcm)
Tôi giải hơi dài 1 tí , anh hãy cố gắng đọc:
a) 571999 ta xét 71999
Ta có: 71999 = (74)499.73 = 2041499. 343 Suy ra chữ số tận cùng bằng 3
Vậy số 571999 có chữ số tận cùng là : 3
b) 931999 ta xét 31999
Ta có: 31999 = (34)499. 33 = 81499.27
Suy ra chữ số tận cùng bằng 7
2. Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Theo câu 1b ta có: 9999931999 có chữ số tận cùng là 7
Tương tự câu 1a ta có: (74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
Nguồn : Câu hỏi tương tự
làm sao chia hết đc bn ơi, nếu là trừ mới chia hết