K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2019

A có (1999-1):2+1=1000 số số hạng nên có thể chia A thành các nhóm, mỗi nhóm có 2 số số hạng. Vậy:

\(A=7+7^3+7^5+...+7^{1999}\)

\(=\left(7+7^3\right)+\left(7^5+7^7\right)+...+\left(7^{1997}+7^{1999}\right)\)

\(=\left(7+7^3\right)+7^4\left(7+7^3\right)+...+7^{1996}\left(7+7^3\right)\)

\(=\left(7+343\right)+7^4\left(7+343\right)+...+7^{1996}\left(7+343\right)\)

\(=350+7^4.350+...+7^{1996}.350⋮5\) (vì \(350⋮5\))

\(=>A⋮5=>\left(đpcm\right)\)

Chúc bn học tốt!

5 tháng 1 2019

Hỏi đáp Toán

4 tháng 12 2015

A=1999+1999^2+...+1999^1998=1999(1+1999)+...+1999^1997(1+1999)=1999*2000+...+1999^1997*2000=(1999+...+1999^1997)*2000(chia hết cho 2000)

b tương tự, biến đổi 35=5*7, có chia hết cho 7 rồi thì chứng minh chia hết cho 5

9 tháng 1 2016

A = 7 + 73 + 75 + ... + 71999 = (7 + 73) + (75 + 77) + ..... + (71997 +71999)
A = 7(1 + 72) + 75(1 + 72) + ... + 71997(1 + 72)
A = 7.50 + 75 .50 + 79.50 + ... + 71997.50
=> A Chia hết cho 5 (1) 0.5đ
A = 7 + 73 + 75 + ... + 71999 = 7.( 70 + 72 + 74 + ... + 71998)
=> A Chia hết cho 7 (2) 0.5đ
Mà ƯCLN(5,7) = 1 => A Chia hết cho 35

9 tháng 1 2016

khoooooooooooooooooooooooooooooooooooooooooooo

26 tháng 8 2017

56454

26 tháng 8 2017

=56454 nha bn

chúc các bn hok tốt

26 tháng 8 2017

\(A=7+7^3+7^5+......+7^{1999}\)

\(A=\left(7+7^3\right)+\left(7^5+7^7\right)+....+\left(7^{1997}+7^{1999}\right)\)

\(A=\left(7+7^3\right)+7^4.\left(7+7^3\right)+......+7^{1996}.\left(7+7^3\right)\)

\(A=350+7^4.350+.......+7^{1996}.350\)

\(A=350.\left(1+7^4+......+7^{1996}\right)\)

\(Do\)\(350⋮35\Rightarrow350.\left(1+7^4+......+7^{1996}\right)⋮35\)

\(\Rightarrow A=7+7^3+.......+7^{1999}⋮35\)

28 tháng 10 2016

Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)

Ta có:

\(A=1+5+5^2+...+5^{2013}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)

\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)

\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)

\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)

\(31⋮31\)

\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)

hay\(A⋮31\) (đpcm)

29 tháng 10 2016

Này đề là chia hết cho 13 sao lại làm chia hết cho 31 cô mình ra bài này mà

27 tháng 8 2017

gọi số bị chia là a, số chia là b, gọi thương của 2 số là \frac{a}{b}

Theo đề bài, ta có:

a : b  

(a+73) : (b+4) =  dư 5

do đó
a + 73  x (b+4) + 5

a + 73 =  x b + \frac{a}{b} x 4 + 5

a + 73 - 5 = a +  

a + 68 = a +  

a - a + 68 =  

68 =  

hay  

 

 

Vậy thương của phép chia là 17

2 tháng 12 2016

Ta có:\(A=7+7^3+7^5+7^7+...+7^{1998}+7^{1999}\)

\(=\left(7+7^3\right)+\left(7^3+7^5\right)+...+\left(7^{1998}+7^{1999}\right)\)

\(=\left(7+7^3\right)+7^2.\left(7+7^3\right)+...+7^{^{1997}}.\left(7+7^3\right)\)

\(=350+7^2.350+...+7^{1997}.350\)

\(=350.\left(1+7^2+...+7^{1997}\right)\)

\(=35.10.\left(1+7^2+...+7^{1997}\right)\)

VÌ 35.10.(1+72+...+71997) CHIA HẾT CHO 35 

NÊN A CHIA HẾT CHO 35

2 tháng 12 2016

A=7 + 73 + 75 +... + 71999=(7 + 72) + (75 + 77)+...+(71997 + 71999)

A=7(1 + 72) + 75(1 + 72)+...+71997(1 + 72)

A=7 x 50 + 75 +...+ 7 =7 x 71997 x 50

=>A chia hết cho 5 (1)

A=7 + 73 + 7+....+ 71999=7 x(70 + 72 + 74  + ...71998)

=>A Chia hết cho 7(2)

Mà ƯCLN(5,7)=1=>A Chia hết cho 35

18 tháng 11 2015

bạn vào câu hỏi tương tự nhé !!!

18 tháng 11 2015

A = 7 + 7^3 + 7^5 + ... + 7^1999 = (7 + 7^3) + (7^5 + 7^7) + ..... + (7^1997 +7^1999)
A = 7(1 + 7^2) + 75(1 + 7^2) + ... + 71997(1 + 7^2)
A = 7.50 + 75 .50 + 79.50 + ... + 71997.50
=> A Chia hết cho 5 (1)
A = 7 + 7^3 + 7^5 + ... + 7^1999 = 7.( 7^0 + 7^2 + 7^4 + ... + 7^1998)
=> A Chia hết cho 7 (2)
Mà ƯCLN(5,7) = 1 => A Chia cho 35.

30 tháng 10 2020

Bài toán này rất khó, dành cho học sinh giỏi

30 tháng 10 2020

Gợi ý : Ghép 2 số liền nhau thành một cặp rồi đặt thừa số chung ra ngoài .