K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 8 2019

Lời giải:
\(S=a^2+\frac{18}{\sqrt{a}}=a^2(1-\frac{1}{2\sqrt{6}})+\frac{a^2}{2\sqrt{6}}+\frac{18}{\sqrt{a}}\)

Áp dụng BĐT AM-GM:

\(\frac{a^2}{2\sqrt{6}}+\frac{18}{\sqrt{a}}\geq 2\sqrt{\frac{3\sqrt{6}.\sqrt{a^3}}{2}}\geq 2\sqrt{\frac{3\sqrt{6}.\sqrt{6^3}}{2}}=6\sqrt{6}\) (do $a\geq 6$)

\(a^2(1-\frac{1}{2\sqrt{6}}\geq 6^2(1-\frac{1}{2\sqrt{6}})=36-3\sqrt{6}\) (do $a\geq 6$)

Cộng lại:

\(\Rightarrow S\ge 36+3\sqrt{6}\)

Vậy $S_{\min}=36+3\sqrt{6}$ khi $a=6$


15 tháng 11 2018

2.

a/ Áp dụgn hệ quả bđt cô si,ta có :

\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)

Vậy GTLN A =a^2/3 khi x= y =z =a/3

b/Áp dụng BĐT Cô-Si dạng Engel,ta có :

\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

Vậy GTNN của B = a^2/2 khi x=y=z =a/3

15 tháng 11 2018

\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)

27 tháng 5 2018

1.Ta có : \(A=\dfrac{2}{\sqrt{x-3}}+\dfrac{1}{\sqrt{x+3}}\)

\(=\dfrac{2\left(\sqrt{x}+3\right)+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Rightarrow M=A\div B=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\div\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\times\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3}{\sqrt{x+3}}\)

25 tháng 10 2017

a) Ta có:

\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)

\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)