K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

\(A=5^0+5^1+5^2+5^3+......+5^{2020}\)

\(\Rightarrow5A=5^1+5^2+5^3+5^4+.......+5^{2021}\)

\(\Rightarrow5A-A=5^{2021}-5^0\)

\(\Rightarrow4A=5^{2021}-1\)

Vì \(5^{2021}-1\)và \(5^{2020}\)là 2 số tự nhiên liên tiếp

\(\Rightarrow\)\(4A\)và \(B\)là 2 số tự nhiên liên tiếp ( đpcm )

19 tháng 10 2020

\(A=5^0+5^1+5^2+5^3+...+5^{2020}\)

\(5A=5.\left(5^0+5^1+5^2+5^3+...+5^{2020}\right)\)

\(=5^1+5^2+5^3+5^4+...+5^{2021}\)

\(5A-A=\left(5^1+5^2+5^3+5^4+...+5^{2021}\right)-\left(5^0+5^1+5^2+5^3+...+5^{2020}\right)\)

\(4A=5^{2021}-5^0\)

\(=5^{2021}-1\)

mà \(B=5^{2021}\)

\(\Rightarrow\)4A và B là 2 số tự nhiên liên tiếp

26 tháng 12 2018

bài 2 : 

Gọi UCLN ( n+3; 2n+5) là d 

\(\Rightarrow n+3⋮d;2n+5⋮d\)

\(\Rightarrow2n+6⋮d;2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

mà 1 là UCLN(n+3;2n+5)

\(\Rightarrow d=1\)

20 tháng 3 2020

b) Gọi d là ước chung của 4n+ 3 và 3n + 2 

Ta có : \(\hept{\begin{cases}4n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(4n+3\right)⋮d\\4.\left(3n+2\right)⋮d\end{cases}}}\)=> 3.( 4n + 3 ) - 4 . ( 3n+2 ) \(⋮d\)

                                                                                      12n + 9   - 12n+ 8    \(⋮\)d

                                                                                                         1 \(⋮\)d => d \(\inƯ\left(1\right)=\left\{1\right\}\)=> d = 1

Vì d=1 => ( 4n+3 ,3n+2) = 1 => đpcm

                                                                                   

                        

11 tháng 12 2019

Cho A=   Và B = 22020

Chứng minh rằng A và B là 2 số tự nhiên liên tiếp 

\Giups mình nhé

Ta có : 

A= 20+21+22+23+......+ 22018+22019 

2A=2(20+21+22+23+......+ 22018+22019) = 21+22+23+......+ 22018+22019 + 22020

2A-A= (21+ 22+23+......+ 22018+22019 + 22020) - ( 20+21+...+22019)

   A= 22020-20 = 22020 -1               

vì A= 22020 - 1 , B=22020 suy ra A và B là 2 số tự nhiên liên tiếp .

vậy A và B là 2 số tự nhiên liên tiếp.

Bài 1 :( 1 ) \(A=5+5^2+5^3+...+5^{2019}\Rightarrow5A=5^2+5^3+5^4+...+5^{2020}\)

\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{2020}\right)-\left(5+5^2+5^3+...+5^{2019}\right)\)

\(\Rightarrow4A=5^{2020}-5\Leftrightarrow4A+5=5^{2020}-5+5=5^{2020}\Rightarrow\) là số chính phương

( 2 ) Gọi ƯCLN của \(3n+2\) và \(5n+3\) là \(d\left(d>0\right)\)

Có \(3n+2⋮d\Leftrightarrow5\left(3n+2\right)⋮d\Leftrightarrow5.3n+2.5=15n+10⋮d\left(1\right)\)

Có \(5n+3⋮d\Leftrightarrow3\left(5n+3\right)⋮d\Leftrightarrow3.5n+3.3=15n+9⋮d\left(2\right)\). Từ \(\left(1\right)\left(2\right)\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\Rightarrowđpcm\)

Bài 2 : ( 1 ) Có \(P=\frac{2019}{x-2020}\) vì tử số dương \(\Rightarrow GTLN\) của \(P=\frac{2019}{x-2020}>0\)

Mà \(2020\) dương \(\Rightarrow x\) dương để \(TMĐK\) \(x-2020>0\)

Để \(P\) có \(GTLN\) lớn nhất thì \(x-2020\) nhỏ nhất \(\Leftrightarrow x-2020=1\Rightarrow x=2021\)

( 2 ) Có \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\) ; \(\frac{b}{c}=\frac{4}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{3}\)

\(\Rightarrow a=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)

\(\Rightarrow b=36\div\left(3+4+3\right)\times4=36\div10\times4=14,4\)

\(\Rightarrow c=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)

2 tháng 3 2020

cho mình hỏi bài 1 phần 2 chữ đpcm là gi thế bạn

26 tháng 9 2017

Mình cần gấp mong các bạn giúp

26 tháng 9 2017

a) A= 50+ 51+ 52+....+ 599

suy ra A = 1+51+52+....+599

suy ra 5A = 5+52+53+....+599+5100

suy ra A =(5+52+53+....+5100)-(1+51+52+...+599)

Vậy A = 5100-1

MÌNH CHỈ LÀM ĐƯỢC CÂU A THUI ! XIN LỖI BẠN !!!

20 tháng 3 2020

a) \(M=1+5+5^2+....+5^{315}+5^{316}\)

\(\Leftrightarrow M=\left(1+5\right)+\left(5^2+5^3\right)+.....+\left(5^{315}+3^{316}\right)\)

\(\Leftrightarrow M=6+5^2\cdot6+....+5^{315}\cdot6\)

\(\Leftrightarrow M=6\left(1+5^2+....+5^{315}\right)\)

=> M là bội của 6

b) Gọi d là ƯCLN (4n+3; 3n+2) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}4n+3⋮d\\3n+2⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(4n+3\right)⋮d\\4\left(3n+2\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)

=> 12n+9-12n-8 chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N*

=> d=1

Vậy với n là số tự nhiên thì 4n+3 và 3n+2 nguyên tố cùng nhau