Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=6^0+6^1+6^2+....+6^{100}\\ \Rightarrow6B=6+6^2+6^3+...+6^{101}\\ \Rightarrow5B=6^{101}-1\\ \Rightarrow5B+1=6^{101}-1+1=6^{101}\)
a.
\(B=1+5+5^2+...+5^{42}\\ \Rightarrow5B=5+5^2+...+5^{43}\\ \Rightarrow4B=5^{43}-1\\ \Rightarrow4B+1=5^{43}\)
tận cùng 5
3A=\(3+3^2+3^3+...+3^{11}\)
3A-A=(\(3+3^2+3^3+...+3^{11}\))-(\(1+3+3^2+...+3^{10}\))
2A=\(3^{11}-1\)
2A+1=\(3^{11}\)
\(A=1+3+3^2+...+3^{2007}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2008}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2008}\right)-\left(1+3+3^2+...+3^{2007}\right)\)
\(\Rightarrow2A=3+3^2+3^3+...+3^{2008}-1-3-3^2-...-3^{2007}\)
\(\Rightarrow2A=3^{2008}-1\)
\(\Rightarrow2A+1=3^{2008}\)
\(A=1+3+3^2+...+3^{2007}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2008}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2008}\right)-\left(1+3+3^2+...+3^{2007}\right)\)
\(\Rightarrow2A=3+3^2+3^3+...+3^{2008}-1-3-3^2-...-3^{2007}\)
\(\Rightarrow2A=3^{2008}-1\)
\(\Rightarrow2A+1=3^{2008}\)
Nhớ k cho mk nha!!!
\(x.x^2.x^3....x^{50}=x^{1+2+3+.......+50}=x^{50.\left(50+1\right):2}=x^{1275}\)
Nguyễn Ngọc Quý bảo lên nhưng ko giải toán nữa cơ mà???
\(3^5:3^3=3^2\)
\(3^8:3^3=3^5\)và \(3^8:3^3=243\)
Ta thấy số mũ của luỹ thừa ta tìm được chính là hiệu của 2 luỹ thừa trên
dự đoán \(\hept{\begin{cases}2^7:2^3=2^4\\2^7:2^4=2^3\end{cases}}\)
- 3^5 / 3^3 = 3^ ( 5 - 3) = 3^ 2 = 9
- 3^8 / 3^3 = 3^ ( 8 - 3) = 3^5 = 243
- 2^7/ 2^3 = 2^ ( 7 - 3) = 2^4 = 16
2^7/ 2^4 = 2^( 7 - 4) = 2^3 = 8