Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Ta có : 1.22= 1.2.2=1.2.(3-1)=1.2.3-1.2
2.32= 2.3.3=2.3.(4-1)=2.3.4-2.3
.................................................
98.992= 98.99.99=98.99.(100-1)=98.99.100-98.99
A=1.2.3 - 1.2 + 2.3.4 - 2.3 + ... + 98.99.100 - 98.99 hay A=1.2.3 + 2.3.4 +...+ 98.99.100 - (1.2 + 2.3 + ... + 98.99) = B - C
B=1.2.3 + 2.3.4 + ... + 98.99.100
B.4=1.2.3.4 + 2.3.4.(5 - 1) + ... + 98.99.100.(101 - 97)= 98.99.100.101
=> 98.99.100.101:4= 24497550
C=1.2 + 2.3 + ... + 98.99
C.3=1.2.3 + 2.3.(4 - 1) + ... + 98.99.(100 - 97)= 98.99.100
=> 98.99.100:3= 323400
Vậy A= 24497550 - 323400 = 24174150
\(A = 1 + 4 + 4^2 + ... + 4\)\(20\)
\(4A = 4 + 4^2 + 4^3 + ...+ 4\)\(21\)
\(4A - A = ( 4+ 4^2 + 4^3 + ... + 4\)\(21\)\()\)\(- ( 1 + 4 + 4^2 + ... + 4\)\(20\) \()\)
\(3A = 2\)\(21\) \(- 1\)
\(\Leftrightarrow\)\(3A + 1 = 2\)\(21\)\(= ( 2^3)^7\)\(= 8^7\)
\(Ta có : 8^7 < 63^7 \)
\(Nên 3A + 1 < 63^7\)
Vì A= 4^0 + 4^1 + 4^2+ 4^3+....+4^20
Suy ra: 4A= 4^1+4^2+4^3+4^4+......+ 4^21
Suy ra:4A-A= 4^21 - 4^0
Suy ra: 3A = 4^21-1
Suy ra: A= (4^21-1) : 3
Suy ra: 3A+1= 3. [ ( 4^21-1) : 3] +1
Suy ra: 3A+1 = ( 4^21-1)+1
Suy ra: 3A + 1 = 4^21= (4^3)^7=64^7
Vì 64 > 63; 7=7
Suy ra: 64^7 > 63^7 hay 3A+1 > 63^7
Ta có: A=2^0+2^1+2^2+2^3+...+2^2010
=>2A=2+2^2+2^3+2^4+...+2^2011
=>2A-A=(2+2^2+2^3+...+2^2011)-( 1+2+2^2+2^3+...+2^2010)
=>A= 2^2011-1
Từ đó ta suy ra A=B (=2^2011-1)
k nha!
2A=21+22+...+22011
Suy ra: A=2A-A = (21+22+...+22011) - (20+21+...+22010)=22011-1=B
Vậy: A=B.
=16384.9.531441:13060694016
=147546.531441:13060694016
=78364164096:13060694016
=6
Chúc em học tốt nha !!
Ta có :
A = 40 + 41 + 42 + 43 + ... + 435
A = 1 + 4 + 42 + 43 + ... + 435
4A = 4.(1 + 4 + 42 + 43 + ... + 435)
4A = 4 + 42 + 43 + 44 + ... + 436
4A - A = (4 + 42 + 43 + 44 + ... + 436) - (1 + 4 + 42 + 43 + ... + 435)
3A = 1 + 436
Ta có : 6412 = (43)12 = 436
Ta thấy : 1 + 436 > 436 => 3A > 6412
Ta có: S=4^0+4^1+...+4^{35}S=40+41+...+435
\Rightarrow4S=4+4^1+...+4^{36}⇒4S=4+41+...+436
\Rightarrow4S-S=\left(4+4^1+...+4^{36}\right)-\left(4^0+4^1+...+4^{35}\right)⇒4S−S=(4+41+...+436)−(40+41+...+435)
\Rightarrow3S=4^{36}-4^0⇒3S=436−40
\Rightarrow3S=\left(4^3\right)^{12}-1⇒3S=(43)12−1
\Rightarrow3S=64^{12}-1⇒3S=6412−1
Vì 64^{12}-1< 64^{12}6412−1<6412 nên 3S< 64^{12}3S<6412
Vậy 3S< 64^{12}3S<6412