Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)
\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)
Từ (1) và (2) \(\Rightarrow A< B\)
Vậy \(A< B.\)
b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)
\(A=\left(0,1\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)
\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
d) \(A=102^7=102^6.102\)(1)
\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)
\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)
Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)
Vậy \(A>B.\)
f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)
\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
a, ta có A=2^24=64^4
B=3^16=81^4
Vì 64^4<81^4
Vậy 2^24<3^36
b, ta có A=0,1^15
B=0,3^30=0,09^15
Vì 0,1^15< 0,09^15
Vậy 0,1^15<0,3^30
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
1)
\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
mà ab = ab; ac > bc ( vì a > b )
=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
a) Ta có: a < b => a + 1 < b + 1
b) Ta có: a < b => a - 2 < b - 2
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
Bài 1:
Ta có:
\(\dfrac{a}{b}>\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)
\(\Leftrightarrow ad>bc\)
Vậy ...
Bài 2:
Ta có:
\(0< a< 5< b\)
\(\Leftrightarrow a;b>0\)
\(\Leftrightarrow\dfrac{b}{a}>0\)
Mà \(a< 5< b\)
\(\Leftrightarrow a< b\)
\(\Leftrightarrow\dfrac{b}{a}>1\)
Vậy ...
\(A=1+3+3^2+3^3+...+3^{2016}\)
\(A=1+3\left(1+3^2+...+3^{2015}\right)\)
\(A=1+3\left(A-3^{2016}\right)\)
\(A=1+3A-3^{2017}\)
\(2A=3^{2017}-1\Rightarrow A=\frac{3^{2017}-1}{2}\)
\(A< B\)