K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

https://olm.vn/hoi-dap/detail/33622965541.html?pos=34266440529

Tham khảo này

AH
Akai Haruma
Giáo viên
8 tháng 9 2024

Lời giải:

$A=a^3+b^3+ab=(a+b)^3-3ab(a+b)+ab=11^3-3ab.11+ab=1331-32ab$

$=1331-32a(11-a)=32a^2-352a+1331$

$=32(a^2-11a)+1331$

$=32(a^2-11a+5,5^2)+363=32(a-5,5)^2+363\geq 363$

Vậy $A_{\min}=363$

Giá trị này đạt tại $a-5,5=0\Leftrightarrow a=5,5$

29 tháng 3 2021

câu trả lời

14 tháng 8 2017

a) Áp dụng bất đẳng thức Bnhiacopxki ta có :

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

b) Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3bc+3ac\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Rightarrow ab+ac+bc\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

7 tháng 4 2016

a, Ở phân số tử là a đầu tiên, thì nhân cả tử và mẫu cho c. Ở phân số thứ 2 có tử là b, nhân với ac, còn phân số còn lại giữ nguyên. Thì bạn sẽ có 3 phân số cùng mẫu nhé :3 Xong công vào ra 1 ^^

b, Viết bình phương (x+y+z)^2= bla blo :v Xong thay giữ kiện xy +yz+zx = 1 vào là done. Xong để có 10x^2+10y^2+z^2 thì dễ rồi nhé ^^

13 tháng 11 2019

a. Câu hỏi của Nguyễn Văn An - Toán lớp 8 - Học toán với OnlineMath

24 tháng 4 2017

\(P=a^3+b^3+c^3+a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)

\(=a^3+a^2\left(b+c\right)+b^3+b^2\left(c+a\right)+c^3+c^2\left(b+a\right)\)

\(=a^2\left(a+b+c\right)+b^2\left(b+c+a\right)+c^2\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=1\left(a^2+b^2+c^2\right)=a^2+b^2+c^2\)

10 tháng 2 2019

Tớ có cách khác:

Từ giả thiết suy ra:

 \(P=a^3+b^3+c^3+a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\)\(=a^2+b^2+c^2\)

Lại có: \(a^2+\frac{1}{9}\ge2\sqrt{a^2.\frac{1}{9}}=\frac{2a}{3}\)

Suy ra \(a^2\ge\frac{2a}{3}-\frac{1}{9}\)

Thiết lập 2 BĐT còn lại tương tự và cộng theo vế:

\(P=a^2+b^2+c^2\ge\frac{2\left(a+b+c\right)}{3}-\frac{1}{9}=\frac{2}{3}-\frac{3}{9}=\frac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a^2=b^2=c^2=\frac{1}{9}\Leftrightarrow a=b=c=\pm\frac{1}{3}\)

Vậy...