K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

A = 2 + 22 + 23 + 24 +...+260

   - A tất nhiên chia hết cho 2 

A = 2 + 22 + 23 + 24 +....+ 260

ta có: (2 + 22) + ( 23 + 24) +....+ (259 + 260)

      chc 3        +    chc 3   + ....+   chc 3

=> A chia hết cho 3

A = 2 + 2+ 23 + 24 + .... + 260

ta có: (2 + 22 + 23) + (24+25+26) +.....+(258 + 259 + 260)

           chc 7          +  chc 7       +.... +    chc 7

=> A chia hết cho 7

A = 2 + 22 + 23 + 24 +....+260

ta có: (2 + 22 + 23) + (24 + 25 + 26)+....+(258 + 259 + 260)

              chc 14     +    chc 14       +.....+   chc 14

=> A chia hết cho 14

25 tháng 11 2018

chc là gì vậy bạn Đỗ Thi Ngọc Khánh

1 tháng 8 2015

A=2(1+2+2^2+...+2^59) chia hết cho 2

A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

A=3.2+3.2^3+...+3.2^59

A=3(2+2^3+...+2^59) chia hết cho 3

A=(2+2^2+2^3)+...+(2^58+2^59+2^60)

A=2.7+2^4.7+...+2^58.7

A=7(2+2^4+...+2^58) chia hết cho 7.

A=7.2(1+2^3+...+2^57)=14(1+2^3+...+2^57) chia hết 14

1 tháng 8 2015

Vì các số hạng đều chẵn => tổng chẵn = > chia hết cho 2

 

24 tháng 8 2017

  Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và  a2b2 = 2.(-5) =(-1).10 =c2d2

P(x) = (9x2 – 9x – 10)(9x2  + 9x – 10) + 24x2

Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:

          Q(y) = y(y + 10x) = 24x2

          Tìm  m.n = 24x2 và  m + n = 10x ta chọn được  m = 6x , n = 4x

Ta được: Q(y) = y2 + 10xy + 24x2

                                = (y + 6x)(y + 4x)

Do đó:     P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).

14 tháng 12 2015

b, Ta có

S= ( 2 + 2) + (2+2) +..... + ( 2 999 + 2 1000 )

  = 2. (2 +1 )+ 2. ( 2+1) +... +2999. (2+1)

  =2.3 +23.3+....+2999.3

  = 3. ( 2 + 2 +...+ 2999)

Vì 3 chia hết cho 3 nên biểu thức trên chia hết cho 3

=> A chia hết cho 3

câu trên tương tự nhưng dễ hơn nên tự đi mà làm

14 tháng 12 2015

dễ mà bạn. Chỉ cần nhóm 2 số đầu với nhau . Rồi cho số 2 ra ngoài 

17 tháng 7 2015

A=2.(1+2)+..........+2^59.(1+2)

A=2.3+.........+2^59.3

A=3.(2+....+2^59) chia hết cho 3

Vậy suy ra A chia hết cho 3

A=2.(1+2+2^2)+........+2^58.(1+2+2^2)

A=2.7+..........+2^58.7

A=7.(2+.....+2^58) chia hết cho 7

Vậy A chia hết cho 7

A=2.(1+2+2^2+2^3)+.........+2^57.(1+2+2^2+2^3)

A=2.15+...........+2^57.15

A=15.(2+2^57) chia hết cho 15

Vậy A chia hết cho 15

24 tháng 8 2017

a) (x-14):2=24-3

(x-14):2 = 13

x-14 = 13.2

x-14 = 26

x = 26 + 14

x = 40

b) x572 = x <=> x = 1 hoặc 0 

24 tháng 8 2017

a, b làm như trên nha, còn mấy bìa còn lại :

 M=1+2+22+...+211 

M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)

M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)

M = 63 + 26.63

M = 63 ( 1+ 26)

M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9

S=3 + 32 +33 +.....+ 39

S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)

S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)

S= 3. 13 + 3^4.13 + 3^7.13

S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13

M= 2+ 2+ 23+....+210 

M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3

=> M chia hết cho 3

A=  7+ 72 + 73 +.....+78 

A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)

A= 7. 400 + 7^5 . 400

A = 400( 7+7^5)

A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5

14 tháng 10 2021

\(a,A=7^{15}+7^{16}+7^{17}\)

\(A=7^{15}\left(1+7+7^2\right)\)

\(A=7^{15}.57\)

Ta có :

\(A=7^{15}.57⋮57\)

\(\Rightarrow A⋮57\)

14 tháng 10 2021

\(b,B=2+2^2+2^3+....+2^{60}\)

\(B=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(B=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(B=2.7+...+2^{58}.7\)

\(B=7\left(2+2^4+....+2^{58}\right)\)

Ta có :

\(B=7\left(2+2^4+....+2^{58}\right)⋮7\)

\(\Rightarrow B⋮7\)

21 tháng 9 2015

\(2A=2^2+2^3+...+2^{61}\)

\(2A-A=\left(2^2-2^2\right)+\left(2^3-2^3\right)+......+2^{61}-1\)

A = 261 - 2

\(A=\left(2+2^2+2^3\right)+......+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=7.2+7.2^4+.....+7.2^{60}=7.\left(2+2^2+.......+2^{60}\right)\)

Vậy A chia hết cho 7