Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+22+23+24+25+26+27+28+......+297+298+299+2100
A=(2+22+23+24)+(25+26+27+28)+......+(297+298+299+2100)
A=2.(1+2+22+23)+25.(1+2+22+23)+.....+297.(1+2+22+23)
A=2.15+25.15+.....+297.15
A=15.(2+25+...+297)\(⋮\)15
A=2+22+23+24+25+......+296+297+298+299+2100
A=2.(1+2+22+23+24)+....+296.(1+2+22+23+24)
A=2.31+...+296.31
A=31.(2+..+296)\(⋮\)31
A chia hết cho 31 và 15 =>A cũng chia hết (31,15)hay A chia hết cho 465(ĐPCM)
1.Gộp 3 số vào thành 1 tổng rồi tính:
(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)
=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)
=1*15+2^3*15+...+2^37*15
=15*(1+2^3+...+2^39) chia hết cho 15
a) \(5+5^2+5^3+....+5^{100}\)
đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )
\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+....+5^{99}.6\)
\(A=6\left(5+5^3+....+5^{99}\right)\)
vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)
b) \(2+2^2+2^3+....+2^{100}\)
đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )
\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )
\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(B=2.31+....+2^{96}.31\)
\(B=31\left(2+...+2^{96}\right)\)
vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)
a) 5+5^2+5^3..+5^100
=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)
=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)
=5.6+5^3.6+.....+5^99.6
=6.(5+5^3+.....+5^99):6
a) \(\left(1+2+2^2+...+2^7\right)\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)
\(=\left(1+2\right)+2^2.\left(1+2\right)+...+2^6.\left(1+2\right)\)
\(=3+2^2.3+...+2^6.3\)
\(=3.\left(1+2^2+...+2^6\right)⋮3\left(đpcm\right)\)
a) Đặt A = 1 + 2 + 22 + 23 + ... + 27
Ta có:
A = 1 + 2 + 22 + 23 + ... + 27
\(\Rightarrow\)2A = 2 + 22 + 23 + 24 + ... + 28
\(\Rightarrow\)A = 28 - 1 = 255
Vì 255\(⋮\)3\(\Rightarrow\)2 + 22 + 23 + 24 + ... + 28\(⋮\)3
\(\Rightarrow\)ĐPCM
a,Ta thấy A là tổng của các số hạng có cơ số giống nhau và có số mũ là các STN liên tiép từ 1 đến 100
số số hạng của tổng A là 100 số hạng
Cứ 2 số hạng ta nhóm thành 1 nhóm ta có
100÷
mk làm tiếp mk ấn nhầm
100:2=50 nhóm
A=(2+2^2)+(2^3+2^4)+...+(2^99+2^100)
A=2(1+2)+2^3(1+2)+...+2^99(1+2)
A=2×3+2^3×3+...+2^99×3
A=(2+2^3+...+2^99)×3
Mà 3 chia hết cho 3
Suy ra (2+2^3+...+2^99)×3 chia hết cho 3
=》A chia hết cho 3
Vậy A chia hết cho 3
c,A=2+2^2+...+2^99+2^100
2A=2(2+2^2+...+2^99+2^100)
2A=2^2+2^3+.,.+2^100+2^101
2A-A=(2^2+2^3+...+2^100+2^101)-(2+2^2+...+2^100)
A=2^2+...+2^101-2-2^2-...-2^100
A=2^101-2
=》2^101-2<2^101
=》A<2^101
Vậy A<2^101
a) S = 2 + 22 + 23 + ... + 2100
ta có: (2+22) + (23+24)+...+(299+2100)
chc 3 + chc 3 +....+ chc 3
=> S chia hết cho 3
b) S = 2 + 22 + 23 + ... + 2100
ta có: (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)
chc 15 +.......+ chc 15
=> S chia hết cho 15
chc nghĩa là chia hết cho nhak
Bài 2:
a)Ta có : \(n+3=\left(n-9\right)+12\)
\(\Rightarrow n+3⋮n-9\Leftrightarrow12⋮n-9\) ( vì n - 9 chia hết cho n - 9 )
\(\Leftrightarrow n-9\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Mà : \(n\in N\) nên \(n-9=\pm1;\pm2;\pm3;\pm4;\pm6;12\)
Ta có bảng :
n - 9 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
n | 3 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | 13 | 15 | 21 |
Vậy \(n=3;5;6;7;8;10;11;12;13;15;21\)
b) Bạn làm tương tự câu a
Chia hết cho 3
a) A = 2 + 22 + 23 +....... + 2100
A = ( 2+ 22) + (23 + 24) + ........ (299+2100)
A = 2(1+2) + 23(1+2) + ........+ 299(1+2)
A= 2. 3 + 23 . 3 + ........ + 299. 3
= 3 . ( 2 + 23 + .........+ 299)
Vì 3 chia hết cho 3 => 3. ( 2 + 23 + ........+299) chia hết cho 3 hay A chia hết cho 3
Chia hết cho 15 cũng tương tự như vậy nha bn!
Ghép 4 số rồi tính!
CHÚC BN HOK GIỎI!