K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

\(A=2+2^2+2^3+\dots+2^{60}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{59}+2^{60})\\=6+2^2\cdot(2+2^2)+2^4\cdot(2+2^2)+\dots+2^{58}\cdot(2+2^2)\\=6+2^2\cdot6+2^4\cdot6+\dots+2^{58}\cdot6\\=6\cdot(1+2^2+2^4+\dots+2^{58})\)

Vì \(6\cdot(1+2^2+2^4+\dots+2^{58})\vdots6\)

nên \(A\vdots6\)

11 tháng 1 2016

A=2+2^2+2^3+2^4+...+2^60

A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+..+(2^57+2^58+2^59+2^60)

A=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+..+2^57(1+2+2^2+2^3)

A=2.15+2^5.15+...+2^57.15

A=15(2+2^5+...+2^57)

=>A chia hết cho 15

A=2+2^2+2^3+2^4+...+2^60

A=(2+2^2+2^3+2^4+2^5+2^6)+(2^7+2^8+2^9+2^10+2^11+2^12)+....+(2^54+2^55+2^56+2^57+2^58+2^59+2^60)

A=2(1+2+2^3+2^4+2^5)+2^7(1+2+2^2+2^3+2^4+2^5)+...+2^54(1+2+2^2+2^3+2^4+2^5)

A=2.63+2^7.63+...+2^54.63

A=63(2+2^7+...+2^54)

A=21.3(2+2^7+...+2^54)

=>A chia hết cho 21

 

11 tháng 1 2016

Ta co A=2+2^2+2^3+2^4+2^5+...+2^60

A=(2+2^2+2^3+2^4)+2^5+...+(2^57+2^58+2^59+2^60)

A=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

A=2*15+...+2^57*15

A=15(2+...+2^57) chia het cho 15=> chia het cho 3

Lai co : A=(2+2^2+2^3)+...+(2^58+2^59+2^60)

A=2(1+2+2^2)+...+2^58(1+2+2^2)

A=2*7+...+2^58*7

A=7*(2+...+2^58) chia het cho 7

A chia het cho ca 3 va 7 ma UCLN(3;7)=1

=>A chia het cho 21

28 tháng 12 2015

a)116+115=(..................1)+(..................1)=..........................2

Vì có chữ số tận cùng là 2 nên chia hết cho 4

28 tháng 12 2015

Bài này thì chắc phải dùng đồng dư -_-

a) Ta có: 

11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5  = -1 (mod 4) => 115 + 1 chia hết cho 4 

=> 116 đồng dư với (-1)6 (mod 4)

=> 116 đồng dư với 1 (mod 4)

=> 116 - 1 chia hết cho 4

=> (116 - 1) + (115 + 1) chia hết cho 4

=> 116 + 115 chia hết cho 4

NM
16 tháng 8 2021

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7

\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.

\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)

mà 91 chia hết cho 13 nên B chia hết cho 13.

\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.

D : để ý rằng \(11^k\) đều có đuôi là 1 

nên D có đuôi là đuôi của \(1+1+..+1=10\)

Vậy D chia hết cho 5

14 tháng 8 2024

Dễ mà bn tự làm đi

10 tháng 10 2018

\(A=2+2^2+...+2^{59}+2^{60}\)

\(A=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(A=2\cdot3+...+2^{59}\cdot3\)

\(A=3\cdot\left(2+...+2^{59}\right)⋮3\left(đpcm\right)\)

10 tháng 10 2018

ĐPCM LÀ GÌ VẬY BẠN?

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3