K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

a) 

\(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\)

\(A=6+2^2\cdot6+...+2^{18}\cdot6\)

\(A=3\cdot2+2^2\cdot3\cdot2+...+2^{18}\cdot3\cdot2\)

\(A=3\left(2\cdot2^3+...+2^{19}\right)⋮3\) (đpcm)

Còn phần b) tớ chịu =))

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

19 tháng 11 2018

1/a/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)

\(=2.3+2^3.3+....+2^9.3\)

\(=3\left(2+2^3+.....+2^9\right)⋮3\)

\(\Leftrightarrow A⋮3\left(đpcm\right)\)

b/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31\)

\(=31\left(2+2^6\right)⋮31\)

\(\Leftrightarrow A⋮31\left(đpcm\right)\)

2/ Với mọi n là số tự nhiên thì \(n\) có hai dạng :

\(\left[{}\begin{matrix}n=2k\\n=2k+1\end{matrix}\right.\)

+) \(n=2k\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+4\right)\left(2k+7\right)\)

\(2k+4⋮2\)

\(\Leftrightarrow\left(2k+4\right)\left(2k+7\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

+) \(n=2k+1\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+1+4\right)\left(2k+1+7\right)=\left(2k+5\right)\left(2k+8\right)\)

\(2k+8⋮2\)

\(\Leftrightarrow\left(2k+5\right)\left(2k+8\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

Vậy...

NV
19 tháng 11 2018

1/

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(A=2.3+2^3.3+2^5.5+...+2^9.3=3.\left(2+2^3+...+2^9\right)\)

Do \(3⋮3\Rightarrow A⋮3\)

\(A=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)

\(A=2.31+2^6.31=31\left(2+2^6\right)\)

Do \(31⋮31\Rightarrow A⋮31\)

2/ \(B=\left(n+4\right)\left(n+7\right)\)

Nếu n chẵn, đặt \(n=2k\Rightarrow B=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)\)

Do 2 chẵn nên B chẵn

Nếu n lẻ, đặt \(n=2k+1\Rightarrow B=\left(2k+5\right)\left(2k+8\right)=2\left(2k+5\right)\left(k+4\right)\)

2 chẵn nên B chẵn

Vậy B luôn chẵn với mọi n

3/ Đề là B(112) hay B(121) bạn?

20 tháng 7 2015

a 2A = 2^2 + 2^3 + 2^4 + .. + 2^11 

 2A -A = 2^2 + 2^3   +... + 2^10 + 2^11 -2- 2^2 - 2^3 - ... - 2^10

      A  = 2^11 - 2  = 2048 - 2 = 2046 = 382 .3 chia hết cho  3 

b, A = 2046 = 31 .66 cha hết cho 31 

      

17 tháng 9 2017

 Nguyễn Việt Hoàng  CTV 5 phút trước 

a) Làm theo thang Tran

b) A = 2046 = 31 . 66 . Mà 2046 : 31 = 66 => Số đó chia hết cho 31

Đ/s:

21 tháng 10 2015

cug dễ thôi nhưng tự làm đê

1 tháng 1 2016

nó tự làm được thì đâu có cần hỏi