Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=1/2+(1/2)^2+................+(1/2)^100
=>1/2B=(1/2)^2+(1/2)^3+............+(1/2)^101
=>1/2B-B=(1/2^2+..............+1/2^101)-(1/2+..............+1/2^100)
=>1/2B-B=1/2^2+..............+1/2^101-1/2-..............-1/2^100
=>1/2B-B=1/2^101+(1/2^2-1/2^2)+................+(1/2^100-1/2^100)-1/2
=>1/2B-B=1/2^101+0+............+0-1/2
=>-1/2B=1/2^101-1/2
=>B=1/2^101-1/2
__________
-1/2
=>B<1
A = 1/2! + 2/3! + 3/4! + ... + 2015/2016!
A = 2/2! - 1/2! + 3/3! - 1/3! + 4/4! - 1/4! + ... + 2016/2016! - 1/2016!
A = 1 - 1/2! + 1/2! - 1/3! + 1/3! - 1/4! + ... + 1/2015! - 1/2016!
A = 1 - 1/2016! < 1 (đpcm)
M = 1/52 + 1/62 + 1/72 + ... + 1/1002
M > 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/100.101
M > 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/100 - 1/101
M > 1/5 - 1/101 > 1/5 - 1/30 = 1/6 = B
=> M > B (đpcm)
C = 1/20 + 1/21 + 1/22 + ... + 1/200
C > 1/200 + 1/200 + 1/200 + 1/200
(181 phân số 1/200)
C > 1/200 . 181 = 181/200 > 180/200 = 9/10 (đpcm)
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(2A=1+\left(\frac{1-\frac{1}{3^{100}}}{2}\right)-\frac{101}{3^{101}}< 1+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow A< \frac{3}{2}:2=\frac{3}{4}\)( đpcm )
\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)(1)
\(2.A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{99}}\)(2)
lay (2)-(1)
\(2.A-A=A=1-\frac{1}{2^{100}}< 1\Rightarrow dpcm\)
A=(200-2-1)(199-2-1)....(101-2-1)
\(A=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right).....\left(\frac{1}{101^2}-1\right)\)
\(A=\frac{1-200^2}{200^2}.\frac{1-199^2}{199^2}.\frac{1-198^2}{198^2}.....\frac{1-101^2}{101^2}\)
\(A=\frac{\left(1-200\right)\left(1+200\right)}{200^2}.\frac{\left(1-199\right)\left(1+199\right)}{199^2}.....\frac{\left(1-100\right)\left(1+100\right)}{100^2}.\frac{\left(1-101\right)\left(1+101\right)}{101^2}\)
\(A=\frac{-199.201}{200.200}.\frac{-198.200}{199.199}.\frac{-197.199}{198.198}.....\frac{-99.101}{100.100}.\frac{-100.102}{101.101}\)
\(A=\frac{199.201}{200.200}.\frac{198.200}{199.199}.\frac{197.199}{198.198}.....\frac{99.101}{100.100}.\frac{100.102}{101.101}\)
\(\Rightarrow A=\frac{200}{2.101}=\frac{201}{202}\)
Ta có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)
> \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)
= \(\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\Rightarrow A>\frac{1}{200}\left(1\right)\)
Lại có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)
\(< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)
\(=\frac{1}{99}-\frac{1}{199}\Rightarrow A< \frac{1}{99}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{200}< A< \frac{1}{99}\left(\text{ĐPCM}\right)\)
Cho A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
CMR:\(\frac{1}{200}< A< \frac{1}{99}\)
+)Ta có:A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)
+)Ta thấy :\(\frac{1}{100.100}\)>\(\frac{1}{100.101}\)
\(\frac{1}{101.101}>\frac{1}{101.102}\)
.............................................
\(\frac{1}{198.198}>\frac{1}{198.199}\)
\(\frac{1}{199.199}>\frac{1}{199.200}\)
=> \(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)
=>A>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)
=>A>\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+........+\frac{1}{198}-\frac{1}{199}+\frac{1}{199}-\frac{1}{200}\)
=>A>\(\frac{1}{100}-\frac{1}{200}=\frac{2}{200}-\frac{1}{200}=\frac{1}{200}\)
=>A>\(\frac{1}{200}\)(1)
+)Ta lại có:
A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)
+)Ta lại thấy:\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\frac{1}{101.101}< \frac{1}{100.101}\)
................................................
\(\frac{1}{198.198}< \frac{1}{197.198}\)
\(\frac{1}{199.199}< \frac{1}{198.199}\)
=>\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)
=>A<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)
=>A<\(\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...........+\frac{1}{197}-\frac{1}{198}+\frac{1}{198}-\frac{1}{199}\)
=>A<\(\frac{1}{99}-\frac{1}{199}\)
Mà A<\(\frac{1}{99}-\frac{1}{199}\)
=>A<\(\frac{1}{99}\)(2)
+)Từ (1) và (2)
=>\(\frac{1}{200}< A< \frac{1}{99}\)(ĐPCM)
Vậy \(\frac{1}{200}< A< \frac{1}{99}\)
Chúc bn học tốt