K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PN
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DT
1
5 tháng 12 2015
32010- ( 32009 + 32008 + ... + 3 + 1 )
Đặt A = 1 + 3 + ... + 32009
=> 3A = 3 + 32 + ... + 32010
=> 3A - A = 32010 - 1
Nên 32010 - ( 32010 - 1 ) = 1
VH
0
NK
1
19 tháng 2 2020
Đặt\(A=3^{2012}-3^{2011}+3^{2010}-3^{2009}+...+3^2-3+1\)
\(\Rightarrow3A=3^{2013}-3^{2012}+3^{2011}-3^{2010}+...+3^3-3^2+3\)
\(\Rightarrow A+3A=\left(3^{2012}-3^{2011}+3^{2010}-3^{2009}+...+3^2-3+1\right)+\left(3^{2013}-3^{2012}+3^{2011}-3^{2010}+...+3^3-3^2+3\right)\)\(\Rightarrow4A=3^{2013}+1>1\Rightarrow A>\frac{1}{4}\)
Vậy \(A>\frac{1}{4}\)