Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=1+3+3^2+...+3^{2012}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2013}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2013}\right)-\left(1+3+3^2+...+3^{2012}\right)\)
\(\Rightarrow2A=3^{2013}-1\)
\(\Rightarrow A=\left(3^{2013}-1\right):2\)
Do \(B=3^{2013}:2\)
\(\Rightarrow B-A=3^{2013}:2-\left(3^{2013}-1\right):2\)
\(\Rightarrow B-A=\left(3^{2013}-3^{2013}+1\right):2\)
\(\Rightarrow B-A=1:2=\frac{1}{2}\)
Vậy \(B-A=\frac{1}{2}\)
a) tự giải
b) Ta có CT dãy số lũy thừa
\(a^0+a^1+a^2+...+a^t=\dfrac{a^{t+1}-a^0}{a-1}\)
Mà Mọi số , phép khai căn mũ 0 = 1 nhưng 0 mũ 0 =1 => tập hợp rỗng => Áp dụng đc CT trên
cho nên Tổng A=\(\dfrac{3^{2012+1}-1}{3-1}=\dfrac{3^{2013}-1}{2}\)
lấy B -A, ta đc
\(\dfrac{1}{2}\)
cm
https://icongchuc.com/cac-dang-bai-toan-lien-quan-tong-day-luy-thua-cung-co-so-38128.html
Ta có:A=\(1+3+3^2+3^3+...+3^{2012}\)
3A=\(3\cdot\left(1+3+3^2+3^3+...+3^{2012}\right)\)
3A=\(3+3^2+3^3+3^4+...+3^{2013}\)
3A-A=\(\left(3+3^2+3^3+3^4+...+3^{2013}\right)-\left(1+3+3^2+3^3+...+3^{2012}\right)\)
2A=\(3+3^2+3^3+3^4+...+3^{2013}-1-3-3^2-3^3-...-3^{2012}\)
2A=\(\left(3-3\right)+\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2012}-3^{2012}\right)+\left(3^{2013}-1\right)\)
2A=\(0+0+0+...+0+3^{2013}-1\)
2A=\(3^{2013}-1\)
A=\(\frac{3^{2013}-1}{2}\)
B=\(3^{2013}\div2\)
B=\(\frac{3^{2013}}{2}\)
VậyB-A=\(\frac{3^{2013}}{2}-\frac{3^{2013}-1}{2}\)
\(B-A=\frac{3^{2013}-\left(3^{2013}-1\right)}{2}\)
\(B-A=\frac{3^{2013}-3^{2013}+1}{2}\)
\(B-A=\frac{1}{2}=0,5\)