K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

b) Ta có :

316 - 1 = ( 32 )8 - 1 = 98 - 1

vì 98 có tận cùng là 1 nên 98 - 1 = ( ....1 ) - 1 = ....0 \(⋮\)2,5

\(\Rightarrow\)316 - 1 \(⋮\)2,5

sorry : nãy đăng lên mà quên làm bài b

15 tháng 12 2017

Ta có :

32 . 54 . 72 

= 32 . ( 52 )4 . 72

= ( 3 . 52 . 7 )2

vì 3 . 52 . 8 là số tự nhiên nên 32 . 54 . 72 là bình phương của 1 số tự nhiên

29 tháng 11 2016

1.

\(A=7+7^2+7^3+...+7^{78}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)

\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)

\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8

Vậy A chia hết cho 8 (đpcm)

 

 

29 tháng 11 2016

\(A=3+3^2+3^3+...+3^{155}\)

\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)

\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)

\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121

Vậy A chia hết cho 121 (đpcm)

28 tháng 9 2017

a)A=(2+22)+(23+24)+...(29+210)

A=2(2+1)+23(1+2)+....+29(2+1)

A=3(2+23+25+27+29)

Vay A chia het cho 3(khi chia 3 duoc 2+23+25+27+29du 0)

b)A=(2+22+23+24+25)+(26+27+28+29+210)

A=2(1+2+22+23+24)+26(1+2+22+23+24)

A=31(2+26) luon chia het cho 31 :))

28 tháng 9 2017

THANKS BN

18 tháng 11 2015

A=2+2^2+2^3+2^4+...+2^60

=>A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

=>A=1.(2+2^2)+2^2.(2+2^2)+...+2^58(2+2^2)

=>A=6+2^2.6+...+2^58.6

=>A=2.3+2^2.2.3+...+2^58.2.3

=>A chia hết cho 3 vì mỗi số hạng đều chia hết cho 3

=>dpcm

b/đợi mik chút

18 tháng 11 2015

A=2(1+2+22+23)+25(1+2+22+23)+......+257(1+2+22+23)

  (2+25+...+257 ).(1+2+22+23)=  (2+25+...+257 ).15

                                                =  (2+25+...+257 ).5.3 chia hết cho 3

B=3+32+ 32(3+32)+ 34(3+32)+....+  318(3+32)  

  =(3+32).(1+32+34+...+318)

  =12.(1+32+34+...+319) chia hết cho 12

                                            

19 tháng 2 2019

\(A=2+2^2+2^3+...+2^{2019}\)

\(2A=2^2+2^3+2^4+...+2^{2020}\)

\(A=2^{2020}-2\)