K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

\(2A=2\left(1+2+2^2+...+2^{197}\right)=2+2^2+.......2^{198}\)

\(2A-A=A=2^{198}-1\)

Ta có: \(2^{198}=2^2.2^{196}=4.\left(2^4\right)^{49}=4.16^{49}\)

649 có đuôi là 6 nên 4.649 có đuôi là 4  suy ra A = 2198-1 = 4.649-1 có đuôi là 3. Những số có đuôi là 3 không phải là số chính phương

Những số chính phương chỉ có thể mang đuôi: 0; 1; 4; 5; 6; 9

7 tháng 12 2017

2A =       2 + 22 + 23 +.........+ 2197 + 2198

_

 A = 1 + 2 + 22 + 23 +.........+ 2197 

 A = 2198 - 1

Vì A = 2198 - 1 mà 2198 là số chẵn sẽ chia hết cho 2, nếu 2198  - 1 nên A sẽ là số lẻ. Số lẻ thường là số chính phương

1 tháng 12 2015

A = (1 + 31 + 32 + 33) + (3+ 3+36 + 37) + ...+ (324 + 325 + 326 + 327) + (328 + 229 + 330)

A = (1 + 31 + 32 + 33) + 34.(1 + 31 + 32 + 33) + ...+ 324.(1 + 31 + 32 + 33) + (328 + 229 + 330)

A = 40 + 34.40 + ....+ 324.40 + (328 + 229 + 330)

A = 40.(1 + 34 + ...+ 324) + (328 + 229 + 330)

Nhận xét: 40.(1 + 34 + ...+ 324) có tận cùng là 0

328 = (34)= 817 = (...1)

329 = 328.3 = (...1).3 = (....3)

330 = 328.3= (...1).9 = (...9)

=> A = (...0) + (...1) + (....3) + (...9) = (....3) 

A có tận cùng là chữ số 3 nên A không thể là số chính phương.

giải

A = (1 + 31 + 32 + 33) + (3+ 3+36 + 37) + ...+ (324 + 325 + 326 + 327) + (328 + 229 + 330)

A = (1 + 31 + 32 + 33) + 34.(1 + 31 + 32 + 33) + ...+ 324.(1 + 31 + 32 + 33) + (328 + 229 + 330)

A = 40 + 34.40 + ....+ 324.40 + (328 + 229 + 330)

A = 40.(1 + 34 + ...+ 324) + (328 + 229 + 330)

328 = (34)= 817 = (...1)

329 = 328.3 = (...1).3 = (....3)

330 = 328.3= (...1).9 = (...9)

=> A = (...0) + (...1) + (....3) + (...9) = (....3) 

A có tận cùng là chữ số 3 nên A không thể là số chính phương.

hok tốt

4 tháng 1 2019

a,   \(S=2.1+2.3+2.3^2+...+2.3^{2004}\)

          \(=2.\left(1+3+3^2+...+3^{2004}\right)\)

Đặt   \(A=1+3+3^2+...+3^{2004}\)

\(\Rightarrow\) \(3A=3+3^2+3^3+...+3^{2005}\)

\(\Rightarrow\) \(2A=3^{2005}-1\)

\(\Rightarrow\) \(A=\frac{3^{2005}-1}{2}\)

\(\Rightarrow\) \(S=2.\frac{3^{2005}-1}{2}=3^{2005}-1\)

b, Ta có : \(3^{2005}=3^{4.501+1}=\left(3^4\right)^{501}.3\)

Mà  \(\left(3^4\right)^{501}\) có chữ số tận cùng là 1

\(\Rightarrow\) \(\left(3^4\right)^{501}.3\) có chữ số tận cùng là 3

\(\Rightarrow\) \(3^{2005}\) có chữ số tận cùng là 3

\(\Rightarrow\) S có chữ số tận cùng là 2

\(\Rightarrow\) S không phải là số chính phương

Study well ! >_<

29 tháng 9 2014

trả lời hộ mình nhé thank you nhiều ngày mai nộp bài rồi

 

22 tháng 5 2016

Loại trừ số 1 ra thì tổng này có: (30-1):1+1=30 (số hạng)

Ta thấy: tổng của 4 số liên tiếp nhau (tính từ 3^1) có tận cùng là 0. Suy ra: 28 số như thế thì tận cùng vẫn là 0.

Mà trong tổng (trừ số 1) có 30 số hạng. 

=> Tổng có tận cùng là 2. (vì theo quy luật tính từ 3^1 thì 4 số liên tiếp sẽ có tận cùng là 3, 9, 7, 1 rồi lại 3, 9, 7, 1, suy ra 2 số hạng còn lại của tổng là 3^29 và 3^30 thì có tận cùng lần lượt là 3, 9 cộng vào tận cùng là 2, 28 số hạng kia tận cùng là 0 cộng 2 vào nữa thì bằng 2)

A= 1+3^1+3^2+3^3+...+3^30 có tận cùng là 3 (tự suy nhé)

Mà số chính phương thì tận cùng là 1, 4, 5, 6, 9

Vậy A ko phải là số chính phương.

4 tháng 10 2017

\(a=1+3+3^2+3^3+.....+3^{30}\)
\(3a=3+3^2+3^3+3^4+....+3^{31}\)
Suy ra: \(a=\frac{3^{31}-1}{2}\).
Xét \(3^{31}-1=\left(3^4\right)^7.3^3-1=\left(...1\right)^7.27-1=....7-1=6\).
Vậy \(a=\frac{3^{31}-1}{2}\) có tận cùng là \(6:2=3\).
Một số chính phương có tận cùng là 0;1;4;5;6;9. Mà a có tận cùng bằng 3 nên không thể là số chính phương.

9 tháng 10 2015

S=1+3+32+33+...330=> 3S=3+32+33+....+331=>3S - S = 331 - 1= 34.7+3 --1 = (34)7.27 - 1=(...1).27-1=(...27)-1=(...26)

=>chữ số tận cùng của S là 26:2=13

vì số chính phương ko có t/c là 3 => S ko phải là số chính phương

tick mình nha