K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2023

Các cặp số có tổng bằng 3000 trong khoảng từ 1 đến 3000 là:

(1499;1501) ; (1498;1502) ; .... ; (978;2022) ; (977;2023) (523 cặp/1046 số hạng)

Vậy có 3000 - 1046 = 1954 số từ 1 - 3000 không được sử dụng

Trường hợp xấu nhất là bốc ra 1954 số đó cùng với 523 số của 523 cặp khác nhau thì vẫn chưa có 2 số có tổng bằng 3000 => phải chọn thêm 1 số

=> Cần 1954 + 523 + 1 = 2478 số để chắc chắn có 2 số có tổng bằng 3000

Bài 163 (33-SNC). Cho 5 số tự nhiên lẻ bất kì, chứng tỏ rằng ta luôn chọn được bốn số có tổng chia hết cho 4 . Bài 164 (33-SNC). Viết 6 số tự nhiên vào 6 mặt của một con xúc xắc. Chứng tỏ rằng khi ta gieo xúc xắc xuống mặt bàn thì trong 5 mặt có thể nhìn thấy bao giờ cũng tìm được một hay nhiều mặt để tổng các số trên mặt đó chia hết cho 5 . Bài A. Cho 2021 số tự nhiên bất kì, chứng...
Đọc tiếp

Bài 163 (33-SNC). Cho 5 số tự nhiên lẻ bất kì, chứng tỏ rằng ta luôn chọn được bốn số có tổng chia hết cho 4 . Bài 164 (33-SNC). Viết 6 số tự nhiên vào 6 mặt của một con xúc xắc. Chứng tỏ rằng khi ta gieo xúc xắc xuống mặt bàn thì trong 5 mặt có thể nhìn thấy bao giờ cũng tìm được một hay nhiều mặt để tổng các số trên mặt đó chia hết cho 5 . Bài A. Cho 2021 số tự nhiên bất kì, chứng tỏ rằng trong đó tồn tại 1 số chia hết cho 2021 hoặc tồn tại 1 vài số có tổng chia hết cho 2021. Bài B. Cho một hình vuông cạnh bằng 5 và chia thành 25 hình vuông kích thước 1 x 1. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau. Bài C. Biết 997 là số nguyên tố lớn nhất , nhỏ hơn 1000. Chứng minh rằng tồn tại số tự nhiên có dạng 111...1 chia hết cho 997.

1
29 tháng 11 2021

Đinh Hoàng Anh lớp 6CT Lương Thế Vinh Hà Nội cơ sở A đúng kg =)))

15 tháng 1 2021

Tui cx đag cần -_-

 

14 tháng 2 2016

toi qua that vong ve ban

14 tháng 2 2016

1.S=(3^0+3^1+3^2)+(3^3+3^4+3^5+3^6)+...+(3^27+3^28+3^29+3^30)                                                                                                            S=13+3^3.(3^0+3^1+3^2+3^3)+...+3^27.(3^0+3^1+3^2+3^3)                                                                                                                      =13+3^3.40+...+3^27.40                                                                                                                                                                        =13+(3^3+...+3^27).40                                                                                                                                                                          =13+(...0)                                                                                                                                                                                            =(...3)

Vậy có tận cùng la 3 va ko co so chính phương nào có tận cùng là 3 nên ....................................

 

 

 

 

                                                                                                                                                                                                                             

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:

Các số viết được dưới dạng lũy thừa của 1 số tự nhiên với số mũ lớn hơn $1$ là:

$16=4^2$

$25=5^2$

$81=9^2$

$625=25^2$

 

9 tháng 9 2021

\(16=4^2;25=5^2;81=9^2;625=5^4;1000=10^3;1331=11^3\)

19 tháng 3 2015

1. Ta có dãy số: 19;1919;191919;19...19(20 số 19)

Theo nguyên lí Direchlet thì có ít nhất 2 số trong dãy số trên có cùng số dư khi chia cho 13

=>19...19(x chữ số 19) - 19...19(y chữ số 19) chia hết cho 19

=>19...1900...0(x-y chữ số 19 , y chữ số 0) chia hết cho 19

=>19...19.10y(x-y chữ số 19) chia hết cho 19

Vì 10y và 19 nguyên tố cùng nhau 

=> 19...19(x-y chữ số 19) chia hết cho 19

=> Tồn tại 1 bội của số 19 mà gồm toàn chữ số 19( đpcm)

19 tháng 3 2015

2. Ta nhóm  20 số trên thành các cặp có tổng bằng 21:

1+20=21 ; 2+19=21 ; ... ; 10+11=21

Vậy có tất cả 10 cặp

Mà chọn 11 số trong dãy số trên nên tho nguyên lý Direchlet thì chọn 11 số bất kì trong dãy số trên thì có ít nhất hai số có tổng bằng 21(đpcm)