K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

mk cũng đag tìm lời giải bàu này

15 tháng 12 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow4x^2+x^2+4y^2+y^2+8xy-2x+2y+1+1=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thay \(x=1\)\(y=-1\) vào biểu thức \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:

\(\left[1+\left(-1\right)\right]^{2007}+\left(1-2\right)^{2008}+\left[\left(-1\right)+1\right]^{2009}\)

\(=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)

\(=0+1+0\)

\(=1\)

Vậy giá trị của biểu thức \(M\) tại ​\(x=1\)\(y=-1\)\(1\)

23 tháng 12 2016

5x^2+5y^2+8xy-2x+2y+2=0

=>(4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0

=>(2x+2y)^2+(x-1)^2+(y+1)^2=0

tổng 3 biểu thức không âm = 0 <=> chúng đều = 0

<=>2(x+y)=x-1=y+1=0

=>x=1;y=-1

Thay vào M ........

23 tháng 12 2016

thanks hoàng phúc nha!

11 tháng 12 2017

Ta có:  5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0

\(\Leftrightarrow\)(4x2 + 8xy + 4y2) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0

\(\Leftrightarrow\)(2x + 2y)2 + (x - 1)2 + (y + 1)2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}\)

Thay x = 1; y = -1; x + y = 0 vào M ta được:

 M = 0 + (1 + 2)2008 + ( - 1 + 1)2009

     = 0 + 32008 + 0 = 32008

16 tháng 10 2023

Đẳng thức: \(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thay vào \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:

\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}=\left(-1\right)^{2008}=1\)

16 tháng 10 2023

Ta có:

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow x^2+4x^2+y^2+4y^2+8xy-2x+2y+1+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+\left(4x^2+8xy+4y^2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(2x+2y\right)^2=0\)  

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)

Mà: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\\4\left(x+y\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) 

Thay giá trị x và y vào M ta có:

\(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)

\(M=\left(1-1\right)^{2007}+\left(1-2\right)^{2008}+\left(-1+1\right)^{2009}\)

\(M=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)
\(M=\left(-1\right)^{2008}\)

\(M=1\)

6 tháng 1 2018

Ta có\(5x^2+5y^2+8xy-2x+2y+2=0\Leftrightarrow4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

<=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

mà \(\hept{\begin{cases}4\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}4\left(x+y\right)^2+\left(y+1\right)^2+\left(x-1\right)^2\ge0\)

dâu = xảy ra <=>\(\hept{\begin{cases}x=1\\y=1\end{cases}}\)

rồi bạn thay vào và tự tính M nhé !

^_^

26 tháng 12 2018

ban lam dung roi day

5 tháng 7 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\left\{{}\begin{matrix}4\left(x+y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}4\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\)

Ta có: \(M=\left(x+y\right)^{2017}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\)

\(=\left(-1\right)^{2008}=1\)

Vậy M = 1