K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Xét tính chẵn, lẻ của 5 số ta có các trường hợp sau:

TH1: Cả 5 số đều chẵn (hoặc đều lẻ), khi đó tích \(\left(a_1-a_2\right)\left(a_1-a_3\right)\left(a_1-a_4\right)\left(a_1-a_5\right)\left(a_2-a_3\right)\left(a_2-a_4\right)\left(a_2-a_5\right)\) chia hết cho \(2^8\) => A chia hết cho 32

TH2: Có 4 số đều chẵn (hoặc đều lẻ), giả sử \(a_1,a_2,a_3,a_4\). Khi đó \(\left(a_1-a_2\right)\left(a_1-a_3\right)\left(a_1-a_4\right)\left(a_2-a_3\right)\left(a_2-a_4\right)\left(a_3-a_4\right)\) chia hết cho \(2^6\) => A chia hết cho 32

TH3: Có 3 số chẵn (hoặc lẻ), giả sử \(a_1=2b_1;a_2=2.b_2,a_3=2b_3\), còn 2 số kia lẻ (hoặc chẵn) , giả sử là \(a_4=2b_4+1,a_5=2b_5+1\).. 

Khi đó \(\left(a_1-a_2\right)\left(a_1-a_3\right)\left(a_1-a_3\right)\left(a_4-a_5\right)=2^4\left(b_1-b_2\right)\left(b_1-b_3\right)\left(b_2-b_3\right)\left(b_4-b_5\right)\) chia hết cho \(2^4=16\) 

Trong các số \(b_1,b_2,b_3\) sẽ lại có ít nhất hai số cùng chẵn (hoặc cùng lẻ), hiệu của hai số này chia hết cho 2. Vậy nên tích trên sẽ chia hết cho 32.

=> Tích A chia hết cho 32.

Ngoài 3 TH trên thì không còn trường hợp nào khác => A luôn chia hết cho 32.

Tương tự, khi chia 5 số cho 3 thì có ít nhất hai số có cùng số dư, giả sử \(a_1,a_2\). Khi đó \(a_1-a_2\) chia hết cho 3.

Xét 4 số \(a_2,a_3,a_4,a_5\) khi chia cho 3 cũng có 2 số có cùng số dư, giả sử \(a_2,a_3\). Khi đó \(a_2-a_3\) chia hết cho 3

=> A chia hết cho 3.3 = 9

A vừa chia hết cho 32, lại vừa chia hết cho 9 => A chia hết cho 32.9 = 288.

5 tháng 11 2018

giả sử \(\left(a1-b1\right).\left(a2-b2\right)...\left(a2007-b2007\right)\) là số chẵn

=> \(\left(a1-b1\right)+\left(a2-b2\right)+...+\left(a2007-b2007\right)\)là số chẵn (vì có 2007 cặp) 

\(\left(a1-b1\right)+\left(a2-b2\right)+...+\left(a2007-b2007\right)\)

\(=\left(a1+a2+a3+...+a2007\right)-\left(b1+b2+b3+...+b2007\right)=0\)

=> điều giả sử đúng 

=> đpcm

AH
Akai Haruma
Giáo viên
29 tháng 4 2020

Tham khảo lời giải tại đây

Câu hỏi của Đõ Phương Thảo - Toán lớp 8 | Học trực tuyến