K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

GTNN của 4x2+y2=1

4 tháng 6 2016

Từ 4x+y=1

=>y=1-4x

Thay vào A ta có:

\(A=4x^2+\left(1-4x\right)^2=4x^2+\left(1-8x+16x^2\right)=20x^2-8x+1\)

\(A=20.\left(x^2-\frac{2}{5}x+\frac{1}{20}\right)=20.\left[x^2-2.x.\frac{1}{5}+\left(\frac{1}{5}\right)^2+\frac{1}{100}\right]\)

\(A=20.\left[\left(x-\frac{1}{5}\right)^2+\frac{1}{100}\right]=20.\left(x-\frac{1}{5}\right)^2+20.\frac{1}{100}=20.\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\)\(20.\left(x-\frac{1}{5}\right)^2\ge0\Rightarrow20.\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

=>GTNN của A là 1/5

Dấu "=" xảy ra <=> x=1/5

7 tháng 7 2017

Sorry nhá mk nhầm : 

Ta có : A = 4x2 - 4x + 2017

=> A = (2x)2 - 4x + 1 + 2016

=> A = (2x - 1)2 + 2016

Mà ; (2x - 1)2 \(\ge0\forall x\)

Nên :  A = (2x - 1)2 + 2016 \(\ge2016\forall x\)

Vậy Amin = 2016 , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

7 tháng 7 2017

Ta có : A = 4x2 - 4x + 2017 

=> A = (2x)2 - 4x + 4 + 2013

=> A = (2x - 2)+ 2013

Mà : (2x - 2)\(\ge0\forall x\)

Nên A = (2x - 2)+ 2013 \(\ge2013\forall x\)

Vậy Amin = 2013 , dấu "=" sảy ra khi va chỉ khi x = 1

3 tháng 4 2015

4x + y = 1 => y = 1 - 4x => 4x2 + y2 = 4x2 + (1-4x)2 = 4x2 + 1 - 8x + 16x2 = 20x2 - 8x + 1 = 20.(x2 - 4/5. x ) + 1 

\(20.\left(x^2-2.x.\frac{2}{5}+\frac{4}{25}\right)-20.\frac{4}{25}+1=20.\left(x-\frac{2}{5}\right)^2+\frac{9}{25}\ge0+\frac{9}{25}=\frac{9}{25}\)

=> min  4x2 + y= 9/25 khi x = 2/5