K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

Vì  \(n^2-n=n\left(n-1\right)\)  luôn là số chẵn với mọi  số nguyên  \(n\)

nên do đó,  \(a^2+b^2+c^2+d^2-\left(a+b+c+d\right)\)  là số chẵn  \(\left(1\right)\)

Mà  \(a^2+b^2=c^2+d^2\)  (theo giả thiết)

nên  \(a^2+b^2+c^2+d^2=2\left(a^2+b^2\right)\)  là một số chẵn \(\left(2\right)\) (do tích trên chia hết cho  \(2\))  

\(\left(1\right)\)  và  \(\left(2\right)\)  suy ra  \(a+b+c+d\)  là một số chẵn

Vậy,   \(a+b+c+d\)  luôn là hợp số với  \(a,b,c,d\in Z^+\)

28 tháng 5 2016

Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Tương tự : \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\) ; \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy Min = 3/2 \(\Leftrightarrow a=b=c=1\)

12 tháng 7 2023

Mày nhìn cái chóa j

4 tháng 9 2017

CMR là j

4 tháng 9 2017

chứng minh rằng

+)Theo bài ta có:a2+b2+(a+b)2=c2+d2+(c+d)2

                  =>(a2)2+(b2)2+[(a+b)2 ]2=(c2)2+(d2)2+[(c+d)2 ]2

                =>a4+b4+(a+b)4=c4+d4+(c+d)4(đpcm)

"Study well" 

13 tháng 2 2020

Sai rồi nha bạn nhưng dù sao cũng cảm ơn bạn 

1 tháng 12 2017

Chỗ giả thiết vế phải có đúng ko vậy