K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Ta có: a+b=c+d

\(\Leftrightarrow a=c+d-b\)

Thay vào : ab+1=cd, ta được:

\(\left(c+d-b\right)b+1=cd\)

\(\Leftrightarrow bc+bd-b^2+1-cd=0\)

\(\Leftrightarrow\left(bc-b^2\right)+\left(bd-cd\right)=-1\)

\(\Leftrightarrow-b\left(b-c\right)+d\left(b-c\right)=-1\)

\(\Leftrightarrow\left(b-c\right)\left(d-b\right)=-1\)

Vì b,c,d là số nguyên nên suy ra: b-c=b-d=1 hoặc b-c=b-d=-1

Vậy: c=d

18 tháng 12 2016

Đặt \(\hept{1\begin{cases}a+b=x\\c+d=y\end{cases}}\)thì ra cần chứng minh

\(xy+4\ge2\left(x+y\right)\)

\(\Leftrightarrow\left(x-2\right)\left(y-2\right)\ge0\)

Mà ta có

\(\hept{\begin{cases}x=a+b\ge2\sqrt{ab}=2\\y=c+d\ge2\sqrt{cd}=2\end{cases}}\)

\(\Rightarrow\)ĐPCM

18 tháng 12 2016

 bđt cô-si dc k  

10 tháng 7 2017

Áp dụng BĐT cauchy-schwarz :

\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)

\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)

Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)

nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)

Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)

do đó \(VT\ge\frac{1}{3}\)

Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)