Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\\ \Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\\ =\dfrac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\dfrac{0}{29}=0\\ \Rightarrow3x=2y;2z=4x;4y=3z\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
(3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2 =(12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4
Áp dụng t/c của dãy tỉ số = nhau, ta có:
(12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4 = (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
(3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2 =
= (12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4 = (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
=> x/2 = y/3 = z/4
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{4\left(3x-2y\right)}{4.4}=\frac{3\left(2z-4x\right)}{3.3}=\frac{2\left(4y-3z\right)}{2.2}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng TCDTSBN ta có:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)
\(\Rightarrow\frac{3x-2y}{4}=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(\frac{2z-4x}{3}=0\Rightarrow2z=4x\Rightarrow\frac{x}{2}=\frac{z}{4}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
ta có:\(\frac{3x-2y}{4}\)=\(\frac{2z-4x}{3}\)=\(\frac{4y-3z}{2}\)
=\(\frac{12x-8y}{16}\)=\(\frac{6z-12x}{9}\)=\(\frac{8y-6z}{4}\)=\(\frac{12x-8y+6z-12x+8y-6z}{16+9+4}\)
=>\(\hept{\begin{cases}3x-2y=0\\2z-4x=0\\4y-3z=0\end{cases}}\)=>\(\hept{\begin{cases}3x=2y\\2z=4x\\4y-3z\end{cases}}\)=>\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{z}{4}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{4}\end{cases}}\)=>\(\hept{\begin{cases}x\\2\end{cases}}=\frac{y}{3}=\frac{z}{4}\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-8y}{16}=0\\\dfrac{6z-12x}{9}=0\\\dfrac{8y-6z}{4}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
Ta có
\(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\)
=> \(\dfrac{12x-8y}{16}\)=\(\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất DTS bằng nhau
\(\dfrac{12x-8y}{16}\)=\(\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)=\(\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}\)=\(\dfrac{0}{29}\)=0
\(\left\{{}\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}\),\(\dfrac{y}{3}=\dfrac{z}{4},\dfrac{z}{4}=\dfrac{z}{2}\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Ta có:
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Rightarrow\left\{{}\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Vậy \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)(đpcm)
Theo đề ta có:
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
=> \(4.\dfrac{3x-2y}{4}=3.\dfrac{2z-4x}{3}=2.\dfrac{4y-3z}{2}\)
=> \(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
=> \(\dfrac{12x-8y}{16}+\dfrac{6z-12x}{9}+\dfrac{8y-6z}{4}=\dfrac{0}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=8y=6z\\\end{matrix}\right.\)
=> \(\dfrac{12x}{24}=\dfrac{8y}{24}=\dfrac{6z}{24}\)( MSC: 24)
=> \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)(đpcm)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\\ \Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\\ =\dfrac{12x-8x+6x-12x+8y-6z}{16+9+4}\\ =0\\ \Rightarrow3x=2y;2z=4x;4y=3z\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
Cmr : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)
\(\Rightarrow3x-2y=0\)
\(\Rightarrow2z-4x=0\)
\(\Rightarrow4y-3z=0\)
Ta có: \(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\) (1)
\(2z-4x=0\Rightarrow2z=4x\Rightarrow\frac{z}{4}=\frac{x}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrowđpcm\)
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\frac{0}{29}=0\)
\(\Rightarrow\frac{3x-2y}{4}=0\Rightarrow3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)( 1 )
\(\Rightarrow\frac{4y-3z}{2}=0\Rightarrow4y-3z=0\Rightarrow4y=3z\Rightarrow\frac{y}{3}=\frac{z}{4}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)