K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
31 tháng 3 2016
Bài này dễ mà bạn! Bạn chỉ cần chứng minh A nằm giữa 2 số tự nhiên liên tiếp là được !
17 tháng 5 2019
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(A=\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{z+x}\)
\(A=3-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)
mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
\(\Rightarrow A< 2\left(1\right)\)
Mặt khác A = \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
\(\Rightarrow A>1\left(2\right)\)
Từ (1) và (2) => 1 < A < 2 => A không phải là số nguyên.
~ Học tốt ~ K cho mk nhé! Thank you.
k mình làm cho
câu hỏi tương tự nha bạn có bài y hệt đó