K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 1 2017

Lời giải:

Áp dụng BĐT Am-Gm:

\(\frac{3(x+y)}{2}.\frac{3(x+y)}{2}.(x+2z).(y+2z)\leq \left(\frac{3x+3y+x+2z+y+2z}{4}\right)^4=(x+y+z)^4\)

\(\Rightarrow \frac{4}{(x+y)\sqrt{(x+2z)(y+2z)}}=\frac{6}{\sqrt{\left ( \frac{3}{2} \right )^2(x+y)^2(x+2z)(y+2z)}}\geq\frac{6}{(x+y+z)^2}(1)\)

Tương tự \(\frac{5}{(y+z)\sqrt{(y+2x)z+2x)}}\geq \frac{15}{2(x+y+z)^2}(2)\)

Mặt khác, áp dụng BĐT Cauchy-Schwarz:

\((x^2+y^2+z^2+4)(1+1+1+1)\geq (x+y+z+2)^2\Rightarrow \frac{4}{\sqrt{x^2+y^2+z^2+4}}\leq \frac{8}{x+y+z+2}(3)\)

Từ \((1),(2),(3)\Rightarrow P\leq \frac{8}{x+y+z+2}-\frac{27}{2(x+y+z)^2}\)

Đặt \(x+y+z=t\). Ta sẽ đi tìm max của \(f(t)=\frac{8}{t+2}-\frac{27}{2t^2}\)

\(f'(t)=\frac{27}{t^3}-\frac{8}{(t+2)^2}=0\Leftrightarrow t=6\)\(\Rightarrow f(t)_{\max}=f(6)=\frac{5}{8}\)

\(\Rightarrow P_{\max}=\frac{5}{8}\). Dấu $=$ xảy ra khi $x=y=z=2$

25 tháng 11 2016

 

Cả lớp mình đi làm lễ 20/11 nà^^!undefined

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

DO đó; OM là tia phân giác của góc AOB

Xét ΔOAM vuông tại A có 

\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)

nên \(\widehat{AOM}=60^0\)

=>\(\widehat{AOB}=120^0\)

14 tháng 10 2017

Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)

Thay 1 vào x, ta có

f(x) =14+12+a=0

2+a=0 suy ra a=-2

6 tháng 10 2016

ảnh thứ hai

7 tháng 10 2016

Chj ở dưới xinh hơn!!!