Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/x + 1/y + 1/z = 1/3 = 1/x+y+z
<=> xy+yz+zx/xyz = 1/x+y+z
<=> (xy+yz+zx).(x+y+z) = xyz
<=> x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz = xyz
<=> x^2y+xy^2+y^2z+zy^2+z^2x+zx^2+2xyz = 0
<=> (x+y).(y+z).(z+x) = 0
<=> x+y=0 hoặc y+z=0 hoặc z+x = 0
<=> z=3 hoặc x=3 hoặc y=3
=> ĐPCM
Tk mk nha
ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2006}\) (x;y;z khác 0)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)(vì x+y+z=2006)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{\left(x+y+z\right).z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{\left(x+y+z\right).z}\)
\(\Leftrightarrow-\left(x+y\right)xy=\left(x+y\right)\left(xz+yz+z^2\right)\) (vì x;y;z khác 0)
\(\Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x+y=0 hoặc y+z=0 hoặc z+x=0
mà x+y+z=2006 nên
z=2006 hoặc x=2006 hoặc y=2006
=> đpcm
Bạn tìm được GTLN bài này không:
Với \(1951\le x\le2005\)
Tìm GTLN của: \(\frac{x^3}{4}-1008x^2+\frac{2016^2x}{4}\)
Từ giả thiết ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)
+) Nếu x + y = 0 hoặc z + x = 0 thì ta không tính được giá trị biểu thức.
+) Nếu y + z = 0 thì \(y=-z\Leftrightarrow y^{2017}=-z^{2017}\Leftrightarrow y^{2017}+z^{2017}=0\)
Suy ra \(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(x^{2018}+z^{2018}\right)=0\)
Ta giả sử 3 số đều =2
=>\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)(Đúng)
=>đpcm
P/s : nhanh gọn lẹ :))
Đặt \(A=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)
Không mất tính tổng quát giả sử:
\(\frac{1}{x+1}< \frac{1}{y+1}< \frac{1}{z+1}\)
Ta có
+) \(A>\frac{3}{1+x}\Leftrightarrow1>\frac{3}{1+x}\)
\(\Leftrightarrow\frac{1}{3}>\frac{1}{x+1}\Leftrightarrow x+1>3\)
<=> x>2(1)
+) \(A< \frac{3}{1+z}\Leftrightarrow1< \frac{3}{1+z}\Leftrightarrow\frac{1}{3}< \frac{1}{1+z}\Leftrightarrow1+z< 3\Leftrightarrow x< 2\)(2)
Từ (1) (2) => ĐPCM