Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \((a,b,c)=\left(\frac{1}{x}; \frac{1}{y}; \frac{1}{z}\right)\Rightarrow a+b+c=1\)
BĐT cần chứng minh trở thành:
\(P=\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(c+1)(a+1)}\geq \frac{1}{16}(*)\)
Thật vậy, áp dụng BĐT Cauchy ta có:
\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)
\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq 3\sqrt[3]{\frac{a^3}{64^2}}=\frac{3a}{16}\)
\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq 3\sqrt[3]{\frac{b^3}{64^2}}=\frac{3b}{16}\)
Cộng theo vế các BĐT trên và rút gọn :
\(\Rightarrow P+\frac{a+b+c+3}{32}\geq \frac{3(a+b+c)}{16}\)
\(\Leftrightarrow P+\frac{4}{32}\geq \frac{3}{16}\Leftrightarrow P\geq \frac{1}{16}\)
Vậy \((*)\) được chứng minh. Bài toán hoàn tất.
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)
Lời giải:
Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)=(a,b,c)\Rightarrow a+b+c=1\)
Bài toán tương đương với việc chứng minh:
\(\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(a+1)(c+1)}\geq \frac{1}{16}\)
Thật vậy, áp dụng BĐT AM-GM ta có:
\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)
Tương tự:
\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq \frac{3a}{16}\)
\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq \frac{3c}{16}\)
Cộng các BĐT thu được ở trên:
\(\Rightarrow \text{VT}+\frac{(a+b+c)+3}{32}\geq \frac{3}{16}(a+b+c)\)
\(\Leftrightarrow \text{VT}+\frac{1}{8}\geq \frac{3}{16}\Rightarrow \text{VT}\geq \frac{1}{16}\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)
\(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{3}{4}\)
\(=\frac{x^3}{1+z+y+yz}+\frac{y^3}{1+x+z+xz}+\frac{z^3}{1+y+x+xy}\)
\(=\frac{x^3}{1+x+y+2y}\ge\frac{x}{2}\Rightarrow TổngBPT\ge\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\ge\frac{2}{3}\left(đpcm\right)\)
(Không chắc à nha)
Ta có : \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\frac{6x-y-z-2}{8}\left(1\right)\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\frac{6y-z-x-2}{8}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{6z-x-y-2}{8}\left(3\right)\end{cases}}\)
Từ (1) , (2) và (3)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)
\(\ge\frac{6x-y-z-2}{8}+\frac{6y-z-x-2}{8}+\frac{6z-x-y-2}{8}\)
\(=\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Chúc bạn học tốt !!!
Ta có : \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\frac{6x-y-z-2}{8}\left(1\right)\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\frac{6y-z-x-2}{8}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{6z-x-y-2}{8}\left(3\right)\end{cases}}\)
Từ (1) , (2) , (3)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)
\(\ge\frac{6x-y-z-2}{8}+\frac{6y-z-x-2}{8}+\frac{6z-x-y-2}{8}\)
\(=\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Chúc bạn học tốt !!!
Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge3\sqrt[3]{\frac{x^3}{\left(1+y\right)\left(1+z\right)}.\frac{1+y}{8}.\frac{1+z}{8}}=\frac{3x}{4}\left(1\right)\\\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{1+z}{8}+\frac{1+x}{8}\ge3\sqrt[3]{\frac{y^3}{\left(1+z\right)\left(1+x\right)}.\frac{1+z}{8}.\frac{1+x}{8}}=\frac{3y}{4}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge3\sqrt[3]{\frac{z^3}{\left(1+x\right)\left(1+y\right)}.\frac{1+x}{8}.\frac{1+y}{8}}=\frac{3z}{4}\left(3\right)\end{cases}}\)
Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:
\(P+\frac{3+x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)
\(\Leftrightarrow P\ge\frac{3\left(x+y+z\right)}{4}-\frac{3+x+y+z}{4}\)
\(\Leftrightarrow P\ge\frac{2\left(x+y+z\right)-3}{4}\left(1\right)\)
Áp dụng bdt AM-GM ta có:
\(x+y+z\ge3\sqrt[3]{xyz}=3\)Thay vào (1) ta được:
\(P\ge\frac{2.3-3}{4}\)
\(\Rightarrow P\ge\frac{3}{4}\)Dấu"="xảy ra \(\Leftrightarrow x=y=z\)
fix đề: CMR:\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}\)
Áp dụng AM-GM có:
\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge3\sqrt[3]{\dfrac{x^3\left(1+y\right)\left(1+z\right)}{8\cdot8\cdot\left(1+y\right)\left(1+z\right)}}=3\sqrt[3]{\dfrac{x^3}{64}}=\dfrac{3x}{4}\)
Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{1+z}{8}+\dfrac{1+x}{8}\ge\dfrac{3y}{4}\\\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}+\dfrac{1+y}{8}+\dfrac{1+x}{8}\ge\dfrac{3z}{4}\end{matrix}\right.\)
Cộng theo về các BĐT trên ta được:
\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}+\dfrac{3+x+y+z}{4}\ge\dfrac{3\left(x+y+z\right)}{4}\)
\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}\ge\dfrac{3x+3y+3z-x-y-z-3}{4}=\dfrac{2\left(x+y+z\right)-3}{4}\)
\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+y\right)\left(1+x\right)}\ge\dfrac{2\cdot3\sqrt[3]{xyz}-3}{4}=\dfrac{2\cdot3-3}{4}=\dfrac{3}{4}\)
-> Đpcm
Dấu ''='' xảy ra khi x = y = z = 1
\(VT=\left(xyz+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\)
\(=yz+xz+xy+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\)
\(=\left(yz+xz+xy\right)+\left(\dfrac{x^2}{xz}+\dfrac{z^2}{yz}+\dfrac{y^2}{xy}\right)+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\ge\left(yz+xz+xy\right)+\dfrac{\left(x+y+z\right)^2}{\left(xz+yz+xy\right)}+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
(bđt Cauchy Shwarz dạng Engel)
\(\ge2\left(x+y+z\right)+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
(bđt AM - GM)
\(=\left(x+y+z\right)+\left(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\ge\left(x+y+z\right)+6\sqrt[6]{x\times y\times z\times\dfrac{1}{x}\times\dfrac{1}{y}\times\dfrac{1}{z}}\)
\(=x+y+z+6=VP\left(\text{đ}pcm\right)\)
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)
\(=6\left(x^2+y^2+z^2\right)+12\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)-2\left(xy+yz+xz\right)\)
\(=6\left(x+y+z\right)^2+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{2z+x+y}\right)-2\left(xy+yz+xz\right)\)
\(\ge6\left(x+y+z\right)^2+2.\dfrac{\left(1+1+1\right)^2}{2x+y+z+x+2y+z+2z+x+y}-2\left(xy+yz+xz\right)\)
\(=6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-2\left(xy+yz+xz\right)\)
\(\ge6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-\dfrac{2}{3}\left(x+y+z\right)^2\)
\(=6.\left(\dfrac{3}{4}\right)^2+\dfrac{18}{4.\dfrac{3}{4}}-\dfrac{2}{3}.\left(\dfrac{3}{4}\right)^2=9\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)
a) ab+bc+ca\(\le\dfrac{\left(a+c+b\right)^2}{3}\)
\(\Leftrightarrow3ab+3bc+3ac\le a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2\)
\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng \(\forall a,b,c\)
Ta có: \(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge\dfrac{3x}{4}\)
\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\dfrac{6x-y-z-2}{8}\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\dfrac{6y-z-x-2}{8}\left(2\right)\\\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{6z-x-y-2}{8}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3)
\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{6x-y-z-2}{8}+\dfrac{6y-z-x-2}{8}+\dfrac{6z-x-y-2}{8}\)
\(=\dfrac{1}{2}\left(x+y+z\right)-\dfrac{3}{4}\ge\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)