Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)
+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)
\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)
https://diendantoanhoc.net/topic/182564-a2-b2-c2-abc-4/
Chị vào đây xem nhé!!
....
Bài 1:
Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min
Nếu chuyển tìm max thì em tìm như sau:
Áp dụng BĐT Cauchy_Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)
Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự:
\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)
\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)
hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Ta có:
\(a^3+b^3+c^3=3abc\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Do a+b+c khác ) nên:
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\frac{1}{2}[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]=0\)
\(\Rightarrow a=b=c\)
Do đó:
Q=\(\frac{a^2+3b^2+5c^2}{\left(a+b+c\right)^2}=\frac{9a^2}{9a^2}=1\)
có giá trị ko đổi
\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)
\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)
Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)
\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)
\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)
oke rồi he
@Nub :v
Áp dụng Bunhiacopski ta dễ có:
\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự:
\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)
Cộng lại:
\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)
Ta đi chứng minh:
\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
Cái này luôn đúng theo Cauchy
Đẳng thức xảy ra tại a=b=c=1
Ta có: \(a^2+b^2+c^2+abc=4\)
\(\Rightarrow a^2+b^2+c^2\le4\)
Ta lại có: \(4=a^2+b^2+c^2+abc=a^2+b^2+c^2+\sqrt{a^2+b^2+c^2}\)
Theo BĐT Cô-si ta có: \(\frac{\left(a^2+b^2+c^2\right)^3}{27}\ge a^2b^2c^2\)
\(\Rightarrow4\le a^2+b^2+c^2+\sqrt{\frac{\left(a^2+b^2+c^2\right)}{27}}\)
Hay: \(\sqrt{\frac{S^3}{27}}\ge4-S\)
\(\Leftrightarrow3\le S\le4\)
\(\Rightarrow Min_S=3\)
\(\Rightarrow Max_S=4\)