Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)
\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)
Xét \(x+y+z\ne0\) thì ta có:
\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)
\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)
Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)
Nếu bị lỗi thì bạn có thể xem đây nhé:
a,Ta có: x+y= -7/6 và y+z= 1/4
=>x+y+y+z= -7/6 +1/4
=>x+z+2y= -11/12
=>1/2+2y= -11/12
=>2y= -11/12 -1/2
=>2y= -17/12
=>y= -17/24
Mà x+y=-7/6 =>x= -7/6+17/24= -11/24
x+z=1/2 =>z=1/2+11/24=23/24
Ta có: \(x+y=-\frac{7}{6};y+z=\frac{1}{4};x+z=\frac{1}{2}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(\Rightarrow2x+2y+2z=-\frac{28}{24}+\frac{6}{24}+\frac{12}{24}\)
\(\Rightarrow2\left(x+y+z\right)=-\frac{5}{12}\)
\(\Rightarrow x+y+z=-\frac{5}{12}:2\)
\(\Rightarrow x+y+z=-\frac{5}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+y\right)=-\frac{5}{24}+\frac{7}{6}\Rightarrow z=-\frac{5}{24}+\frac{28}{24}=\frac{23}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(y+z\right)=-\frac{5}{24}-\frac{1}{4}\Rightarrow x=-\frac{5}{24}-\frac{6}{24}=-\frac{11}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+z\right)=-\frac{5}{24}-\frac{1}{2}\Rightarrow y=-\frac{5}{24}-\frac{12}{24}=-\frac{17}{24}\)
Vậy \(x=\frac{23}{24};y=-\frac{17}{24};z=-\frac{11}{24}\)
Chuk pạn hok tốt!
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Ta có: \(\hept{\begin{cases}|x+2y-z|\ge0;\forall x,y,z\\\left(x-y+3z\right)^2\ge0;\forall x,y,z\\\left(z-1\right)^4\ge0;\forall x,y,z\end{cases}}\)\(\Rightarrow|x+2y-z|+\left(x-y+3z\right)^2+\left(z-1\right)^4\ge0;\forall x,y,z\)
Do đó \(|x+2y-z|+\left(x-y+3z\right)^2+\left(z-1\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}|x+2y-z|=0\\\left(x-y+3z\right)^2=0\\\left(z-1\right)^4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2y-z=0\\x-y+3z=0\\z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2y=1\\x-y=-3\\z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{4}{3}\\z=1\end{cases}}\)
Vậy ...
Bạn ơi đề bài có vậy thôi nha.
Bạn chỉ mình cách dãy tỉ số bằng nhau đc ko ạ???
\(\text{A=|x| - |x-2| }\le|x-x+2|=2\)
=> MaxA=2 , dấu bằng xảy ra khi \(x\ge2\)
Ta có: x(x+y+z) = 4
y(x+y+z) = 6
z(x+y+z) = 6
Cộng vế theo vế, ta được (x+y+z)2 = 16 => x+y+z = 4 hoặc -4
Ta có 2 trường hợp sau:
TH 1: x+y+z = 4
Mà x(x+y+z) = 4 => x = 1
y(x+y+z) = 6 => y = 6/4 = 3/2
=> z = 3/2
TH 2: x+y+z = -4
Mà x(x+y+z) = -4 => x = -1
y(x+y+z) = 6 => y = -6/4=-3/2
=> z = -3/2
Vậy ta có tất cả là 2 cặp số hữu tỉ thỏa mãn đầu bài
x. (x+y+z) = -1/3 ⇔ x + y + z = -\(\dfrac{1}{3x}\) (1)
y.(x+y+z) = - 2/3 ⇔ x + y + z = \(\dfrac{-2}{3y}\) (2)
z. (x+y+z) = 2 ⇔ x + y + z = \(\dfrac{2}{z}\) (3)
từ (1) ; (2); (3) ta có:
\(\dfrac{-1}{3x}\) = \(\dfrac{-2}{3y}\) = \(\dfrac{2}{z}\) ⇒ \(\dfrac{-2}{6x}\) = \(\dfrac{-2}{3y}\) = \(\dfrac{-2}{-z}\)
⇒ 6x = 3y = -z
⇒ \(\dfrac{x}{3}\) = \(\dfrac{y}{6}\) = \(\dfrac{-z}{18}\) ⇒ \(\dfrac{x+y-(-z)}{3+6-18}\) = \(\dfrac{x+y+z}{-9}\)
⇒ x + y + z = -3x ⇒ -3x. x = -1/3 ⇒ x = +_ 1/3
với x = 1/3 thì y = \(\dfrac{6}{3}\) . x = 2. 1/3 = 2/3;
z = -6x = -6.1/3 = -2
vậy ( x,y,z) =( 1/3; 2/3; -2)
với x = -1/3 thì y = \(\dfrac{6}{3}\) . x = \(\dfrac{6}{3}\) . (-1/3 ) = -2/3
z = -(-1/3 )x6 = 2
vậy (x,y,z) =(-1/3; -2/3 ; 2)
kết luận (x,y,z) = ( 1/3; 2/3; -2) ; (-1/3; -2/3; 2)