Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
\(=\sqrt{\dfrac{\left(bc\right)^2+\left(ac\right)^2+\left(ab\right)^2}{\left(abc\right)^2}}\)
\(=\dfrac{\sqrt{\left(bc+ac+ab\right)^2-2abc\left(a+b+c\right)}}{abc}\)
(áp dụng HĐT: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)\))
\(=\dfrac{\sqrt{\left[a\left(b+c\right)+bc\right]^2-2abc\left[a+\left(b+c\right)\right]}}{abc}\)
\(=\dfrac{\sqrt{\left(a^2+bc\right)^2-4a^2bc}}{abc}\)
\(=\dfrac{\sqrt{a^4+2a^2bc+\left(bc\right)^2-4a^2bc}}{abc}\)
\(=\dfrac{\sqrt{a^4-2a^2bc+\left(bc\right)^2}}{abc}\)
\(=\dfrac{a^2-bc}{abc}\) là 1 số hữu tỉ (đpcm)
Ta có:
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
\(=\dfrac{\left(b+c\right)^2b^2+\left(b+c\right)^2c^2+b^2c^2}{b^2c^2\left(b+c\right)^2}\)
\(=\dfrac{b^4+2b^3c+3b^2c^2+2bc^3+c^4}{b^2c^2\left(b+c\right)^2}\)
\(=\dfrac{\left(b^4+2b^2c^2+c^4\right)+2bc\left(b^2+c^2\right)+b^2c^2}{b^2c^2\left(b+c\right)^2}\)
\(=\dfrac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}\)
\(\Rightarrow\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}}=\dfrac{b^2+bc+c^2}{bc\left(b+c\right)}\)
Vì a, b, c là các số hữu tỉ nên \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là số hữu tỉ
Câu 3 : Ta có :
\(\left\{{}\begin{matrix}a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\\b^2+1=b^2+ab+bc+ca=\left(b+c\right)\left(b+a\right)\\c^2+1=c^2+ab+bc+ca=\left(c+a\right)\left(c+b\right)\end{matrix}\right.\)
Thay vào biểu thức ta được :
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Vậy biểu thức trên là một số hữu tỉ .
Wish you study well !!!
Ta có: \(a=b+c\Rightarrow a-b-c=0\)
\(\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{2}{ab}+\dfrac{2}{bc}-\dfrac{2}{ac}\)
\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{a-b-c}{abc}\right)\)\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Nên \(P=\sqrt[]{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt[]{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}\)
\(=\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) => ĐPCM
Bài này thiếu " a,b,c là các số hữu tỉ " phải không?
Ta có \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}-\dfrac{1}{bc}\right)\)
= \(\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2.\dfrac{c+b-a}{abc}\)
= \(\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2\) (vì a = b + c)
Suy ra \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}=\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\)
Do a, b, c là các số hữu tỉ khác 0 nên \(\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) là một số hữu tỉ
\(a=b+c\Rightarrow a-b-c=0\)
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a-b-c\right)}{abc}}\)
\(=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{2}{ab}-\frac{2}{ac}+\frac{2}{bc}}=\sqrt{\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)^2}=\left|\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right|\)
\(\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{b}\Leftrightarrow ab=bc+ac\Leftrightarrow2ab-2bc-2ac=0\\ \Leftrightarrow\sqrt{a^2+b^2+c^2}=\sqrt{a^2+b^2+c^2+2ab-2bc-2ac}\\ =\sqrt{\left(a+b-c\right)^2}=\left|a+b-c\right|\left(dpcm\right)\)
Câu 23:
https://olm.vn/hoi-dap/detail/1732532846797.html