Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Ta có:
\(\frac{a+1}{b^2+1}=a-\frac{ab^2-1}{b^2+1}\ge a-\frac{ab^2-1}{2b}=a-\frac{ab}{2}+\frac{1}{2b}\)
Tương tự ta có:
\(\frac{b+1}{c^2+1}\ge b-\frac{bc}{2}+\frac{1}{2c},\frac{c+1}{a^2+1}\ge c-\frac{ca}{2}+\frac{1}{2a}\)
\(\Rightarrow P\ge a+b+c-\frac{ab+bc+ca}{2}+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}+\frac{1}{2}\left(\frac{\left(1+1+1\right)^2}{a+b+c}\right)\)
\(=3-\frac{9}{6}+\frac{1}{2}.\frac{9}{3}=3\)
Dấu bằng xảy ra khi a=b=c=1
Áp dụng BĐT Cauchy- schwarz:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\)
\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\)
\(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}\)\(+\frac{1}{ab+bc+ca}\)
\(+\frac{2007}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)
\(=\frac{6030}{\left(a+b+c\right)^2}\ge670\)
(Dấu "="\(\Leftrightarrow a=b=c=1\))
Xét vế trái, ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{ab+bc+ca}{ab}+\frac{ab+bc+ca}{bc}+\frac{ab+bc+ca}{ca}\)(Do theo giả thiết thì ab + bc + bc = 1)
\(=\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+3\)
Khi đó, ta quy BĐT cần chứng minh về: \(\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)\)\(\ge\sqrt{\frac{1}{a^2}+1}+\sqrt{\frac{1}{b^2}+1}+\sqrt{\frac{1}{c^2}+1}\)\(=\frac{\sqrt{a^2+1}}{a}+\frac{\sqrt{b^2+1}}{b}+\frac{\sqrt{c^2+1}}{c}\)
Theo BĐT Cauchy cho 2 số dương, ta có:
\(\frac{\sqrt{a^2+1}}{a}=\frac{\sqrt{a^2+ab+bc+ca}}{a}=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{a}\)\(\le\frac{\frac{a+b+a+c}{2}}{a}=\frac{2a+b+c}{2a}\)(1)
Tương tự ta có: \(\frac{\sqrt{b^2+1}}{b}\le\frac{2b+c+a}{2b}\)(2); \(\frac{\sqrt{c^2+1}}{c}\le\frac{2c+a+b}{2c}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(\frac{\sqrt{a^2+1}}{a}+\frac{\sqrt{b^2+1}}{b}+\frac{\sqrt{c^2+1}}{c}\)\(\le\frac{2a+b+c}{2a}+\frac{2b+c+a}{2b}+\frac{2c+a+b}{2c}\)
\(=3+\frac{1}{2}\left[\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{b}{c}\right)\right]\)
Đến đây, ta cần chứng minh \(\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)\)\(\ge3+\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\)
\(\Leftrightarrow\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\ge3\)(Điều này hiển nhiên đúng vì theo BĐT Cauchy, ta có:
\(\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\)\(\ge\frac{1}{2}.6\sqrt[6]{\frac{a^2b^2c^2}{a^2b^2c^2}}=3\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = \(\frac{1}{\sqrt{3}}\)
\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)
\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)
\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ
Áp dụng BĐT AM-GM ta có:
\(\frac{a^2}{1+b-a}+a^2\left(1+b-a\right)\ge2a^2\)
\(\frac{b^2}{1+c-b}+b^2\left(1+c-b\right)\ge2b^2\)
\(\frac{c^2}{1+a-c}+c^2\left(1+a-c\right)\ge2c^2\)
Cộng theo vế rồi rút gọn, ta được:
\(\frac{a^2}{1+b-a}+\frac{b^2}{1+c-b}+\frac{c^2}{1+a-c}+a^2b+b^2c+c^2a-a^3-b^3-c^3\ge1\)
Vậy ta cần cm BĐT \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\), luôn đúng với BĐT AM-GM 3 số
Vậy BĐT được chứng minh
Áp dụng BĐT AM - GM:
\(a+b+c\ge3\sqrt[3]{abc}\); \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)