Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^2=\left(a+b+c\right)^2=\left(\frac{1}{2}.2a+\frac{1}{\sqrt{6}}.\sqrt{6}b+\frac{1}{\sqrt{3}}.\sqrt{3}c\right)^2\)
\(\Rightarrow9\le\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4a^2+6b^2+3c^2\right)\)
\(\Rightarrow4a^2+6b^2+3c^2\ge\frac{9}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=12\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a+b+c=3\\4a=6b=3c\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(1;\frac{2}{3};\frac{4}{3}\right)\)
\(N=4a^2+4+6b^2+\frac{8}{3}+3c^2+\frac{16}{3}-12\)
\(N\ge2\sqrt{16a^2}+2\sqrt{16b^2}+2\sqrt{16c^2}-12=8\left(a+b+c\right)-12=12\)
\(\Rightarrow N_{min}=12\) khi \(\left\{{}\begin{matrix}a=1\\b=\frac{2}{3}\\c=\frac{4}{3}\end{matrix}\right.\)
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
Áp dụng bất đẳng thức Cô - si cho 2 số không âm, ta có:
\(\frac{a^2+6a+3}{a^2+a}=\frac{\left(3a^2+3\right)+6a-2a^2}{a^2+a}\ge\frac{6a+6a-2a^2}{a^2+a}\)
\(=\frac{12a-2a^2}{a^2+a}=\frac{14}{a+1}-2\)
Tương tự ta có: \(\frac{b^2+6b+3}{b^2+b}\ge\frac{14}{b+1}-2\);\(\frac{c^2+6c+3}{c^2+c}\ge\frac{14}{c+1}-2\)
Cộng từng vế của 3 bất đẳng thức trên và sử dụng BĐT Bunhiacopxki dạng phân thức, ta được:
\(A\ge14\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)-6\ge14.\frac{9}{a+b+c+3}-6\)
\(\ge14.\frac{9}{3+3}-6=15\)
Đẳng thức xảy ra khi a = b = c = 1
Cách 2, dùng UCT xét BĐT phụ
Xét BĐT phụ: \(\frac{x^2+6x+3}{x^2+x}\ge\frac{-7}{2}x+\frac{17}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(7x+6\right)\left(x-1\right)^2}{2\left(x^2+x\right)}\ge0\)(Đúng với mọi x dương)
Áp dụng, ta được: \(A=\frac{a^2+6a+3}{a^2+a}+\frac{b^2+6b+3}{b^2+b}+\frac{c^2+6c+3}{c^2+c}\)\(\ge\frac{-7}{2}\left(a+b+c\right)+\frac{17}{2}.3=\ge\frac{-7}{2}.3+\frac{51}{2}=15\)
Đẳng thức xảy ra khi a = b = c = 1
bài này nói lại 1 lần k đến lớp 9 tầm lớp 7 nhé!
vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
áp dụng tc dãy tỉ số = nhau
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
=> a=b=c
thay b=a ; c=a
=>bt P= \(\frac{4a+6a+2017a}{4a-6a-2017a}\)
đến đây tự làm típ!
\(3\left(4a^2+6b^2+3c^2\right)-4\left(a+b+c\right)^2\)
\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{16}\ge0\)
Rồi làm nốt.
Sửa lại tí:
\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{2}\ge0\) nha!
Do đó \(4a^2+6b^2+3c^2\ge\frac{4}{3}\left(a+b+c\right)^2=12\)
Vậy...