Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Áp dụng :
Số chính phương chia 3 dư 0 hoặc 1
Số chính phương chia 4 dư 0 hoặc 1
Đặt A = ( x - y )( x - z )( y - z)
Vì một số chính phương chia 3, 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 ( 1 )
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất hai số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 ( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với ƯCLN ( 3, 4 ) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
#~Will~be~Pens~#
bài này bạn giải rồi mà
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = (x - y)(y - z)(z - x)
Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 (1)
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 (2)
Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
Ap dụng:
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = (x - y)(y - z)(z - x)
Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 (1)
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 (2)
Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
Nếu a+b+c = 0 hoặc a =b=c thì a^3 + b^3 + c^3 = 3abc
Sử dụng tính chất trên ta được :
( x - y )^3 + ( y -z )^3 + ( z - x )^3 = 3( x -y )(y -z )( z -x )
Nếu x ,y, z có cùng số dư khi chia cho 3 =>
x-y , y- z , z - x :/ 3 ( :/ là kí hiệu chia hết )
=> ( x -y )(y -z )( z -x ) :/ 27 => 3( x -y )(y -z )( z -x ) :/ 27
,G/S trong ba số x,y,z ko có số nào có cùng số dư khi chia hết cho 3
=> ( x -y )(y -z )( z -x ) ko chia hết cho 3
Từ G/S => x,y,z chia 3 sẽ có 3 số dư là 0,1,2
=> x+y +z :/3 => ( x -y )(y -z )( z -x ) :/3 ( Vô lý )
Vậy trong ba số x,y,z có hai số có cùng số dư khi chia cho 3 . G/S đó là x,y
=> ( x -y )(y -z )( z -x ) :/3 => x +y +z :/3
1,Nếu x,y :/ 3 => z :/3 => ( x -y )(y -z )( z -x ) :/27 => 3( x -y )(y -z )( z -x ) :/ 27
2,Nếu x,y chia 3 dư 1 , x+y+z :/3 => z chia 3 dư 1 => 3( x -y )(y -z )( z -x ) :/ 27
3,Nếu x,y chia 3 dư 2 , x+y + z :/3 => z chia 3 dư 2 => 3( x -y )(y -z )( z -x ) :/ 27
Tóm lại 3( x -y )(y -z )( z -x ) :/ 27 hay M=(x-y)^3+(y-z)^3+(z-x)^3 :/ 27
tích nha
+) Th1: nếu 3 số x;y;z có cùng số dư khi chia cho 3 => x - y ; y - z; z - x chia hết cho 3
=> Tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 =27
+) Th2: Nếu có 2 trong 3 số có cùng số dư khi chia cho 3. Giả sử hai số đó là x; y.
*Nếu x; y chia cho 3 dư 0 => x - y chia hết cho 3
mà (x - y)(y - z)(z -x) = x+ y + z => x+ y + z chia hết cho 3 => z chia hết cho 3
=> (y - z); (z - x) chia hêtw cho 3 => tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 = 27
* Nếu x; y chia cho 3 dư 1 => x - y chia hết cho 3 => x+ y + z chia hết cho 3. mà x + y chia cho 3 dư 2 => z chia cho 3 dư 1
=> x; y ; z chia cho 3 có cùng số dư => Tích (x - y)(y - z)(z-x) chia hết cho 27
* Tương tự, nếu x; y chia cho 3 dư 2 => z chia cho 3 dư 2 => Tích (x - y)(y - z)(z - x) chia hết cho 27
=> x+ y + z chia hết cho 27
+) Th3: Cả số x; y ; z không có cùng số dư khi cho 3
=> x; y; z chia cho 3 dư là 0;1 ; 2 và các hiệu x - y ; y - z; z - x không chia hết cho 3
x; y ;z chia cho 3 dư 0; 1;2 => x+ y + z chia hết cho 3
tích (x - y)(y - z)(z - x) không chia hết cho 3 mà (x - y)(y - z)(z - x) = x+ y + z
=> Th3 không xảy ra
VẬY