K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{1}{b+1+bc}+\dfrac{1}{c+1+ac}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{abc+ac+abc.c}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{1+ac+c}+\dfrac{1}{ac+c+c}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac+1+c}{ac+c+1}=1\) (đpcm)

9 tháng 5 2017

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{b}{\dfrac{b}{ab}+b+1}+\dfrac{\dfrac{1}{ab}}{\dfrac{a}{ab}+\dfrac{1}{ab}+1}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ba+a}+\dfrac{1}{a+1+ab}=\dfrac{ab+a+1}{ab+a+1}=1\)

14 tháng 6 2017

Ta có \(\dfrac{ab+c}{c+1}=\dfrac{ab+c\left(a+b+c\right)}{\left(a+c\right)+\left(b+c\right)}=\dfrac{\left(a+c\right)\left(b+c\right)}{\left(a+c\right)+\left(b+c\right)}\)

\(\Rightarrow VT=\dfrac{\left(a+c\right)\left(b+c\right)}{\left(a+c\right)+\left(b+c\right)}+\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a+b\right)+\left(b+c\right)}+\dfrac{\left(a+c\right)\left(a+b\right)}{\left(a+b\right)+\left(a+c\right)}\)

Đặt \(\left\{{}\begin{matrix}a+c=x\\b+c=y\\a+b=z\end{matrix}\right.\) \(\Rightarrow x+y+z=2\)

\(\Rightarrow VT\Leftrightarrow\dfrac{xy}{x+y}+\dfrac{yz}{z+y}+\dfrac{xz}{x+z}\)

Áp dụng bất đẳng thức \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{xy}{x+y}\le\dfrac{xy}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{y}{4}+\dfrac{x}{4}\)

Thiết lập tương tự và thu lại ta có

\(\Rightarrow VT\le\dfrac{2\left(x+y+z\right)}{4}=1\) ( đpcm )

\(\Leftrightarrow\dfrac{ab+c}{c+1}+\dfrac{bc+a}{a+1}+\dfrac{ac+b}{b+1}\le1\)

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

8 tháng 12 2018

Câu hỏi t/tự

Đầu tiên ta cm bđt:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)

Áp dụng ta có:

\(A=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\ge\dfrac{9}{3+ab+bc+ca}\)

Cần cm:\(ab+bc+ca\le3\)

Hay \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

=>đpcm

4 tháng 5 2018

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(A=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

\(A\ge\dfrac{\left(1+1+1\right)^2}{3+ab+bc+ac}=\dfrac{9}{3+ab+bc+ac}\)

Mặt khác,theo hệ quả AM-GM: \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}\le\dfrac{3^2}{3}=3\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ac}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)