Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(0\le\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)(1)
theo đề bài:
\(a^2+b^2+ab+bc+ac< 0\)
=> \(2\left(a^2+b^2+ab+bc+ac\right)< 0\)
=> \(2a^2+2b^2+2ab+2bc+2ac< 0\)(2)
Từ (1); (2) =>\(2a^2+2b^2+2ab+2bc+2ac< \) \(a^2+b^2+c^2+2ab+2bc+2ac\)
=> \(a^2+b^2< c^2\)
1. Cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=ab+bc+ca và a+b+c=3. Tính M=a2016+2015b2015+2020c
a2+b2+c2=ab+bc+ca
<=> 2( a2+b2+c2 ) =2( ab+bc+ca )
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0
Dễ chứng minh VT ≥ 0 ∀ a,b,c. Dấu "=" xảy ra <=> a=b=c
Lại có a+b+c=3 => a=b=c=1
từ đây bạn thế vào tính M nhé :))
2.Cho x>y>0. Chứng minh \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Ta có : \(\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)
<=> \(\frac{x^2-y^2}{x^2+y^2}-\frac{x-y}{x+y}>0\)
<=> \(\frac{\left(x^2-y^2\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{\left(x^2+y^2\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{x^3+x^2y-xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{x^3-x^2y+xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{x^3+x^2y-xy^2-y^3-x^3+x^2y-xy^2+y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{2x^2y-2xy^2}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
<=> \(\frac{2xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)( đúng vì x > y > 0 )
=> đpcm
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{ab}{6+a-c}=\frac{ab}{a+b+c+a-c}=\frac{ab}{2a+b}\)
\(=\frac{ab}{a+a+b}\le\frac{1}{9}\left(\frac{ab}{a}+\frac{ab}{a}+\frac{ab}{b}\right)=\frac{1}{9}\left(2b+a\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{bc}{6+b-a}\le\frac{1}{9}\left(2c+b\right);\frac{ca}{6+c-b}\le\frac{1}{9}\left(2a+c\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{1}{9}\cdot3\left(a+b+c\right)=\frac{1}{3}\cdot\left(a+b+c\right)=\frac{6}{3}=2\)
Đẳng thức xảy ra khi \(a=b=c=2\)