Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
Ta có \(a>0,b>0,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0,a+c\ge0,b+c\ge0\)
Do đó \(\frac{1}{c}=-\left(\frac{1}{a}+\frac{1}{b}\right)< 0\Rightarrow c< 0\)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow bc+ac+ab=0\)
\(\Rightarrow c^2=c^2+bc+ac+ab\)
\(\Rightarrow c^2=c\left(c+b\right)+a\left(c+b\right)=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow-c=\sqrt{\left(a+c\right)\left(b+c\right)}\Rightarrow2\sqrt{\left(a+c\right)\left(b+c\right)}+2c=0\)
\(\Rightarrow a+b=a+c+2\sqrt{\left(a+c\right)\left(b+c\right)}+b+c\)
\(\Rightarrow a+b=\left(\sqrt{a+c}+\sqrt{b+c}\right)^2\)
\(\Rightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)(đpcm)
Hoặc cách 2 bạn có thể đi ngược lại giả thuyết.Chúc bạn học tốt.
Nhìn đề thấy mệt nên sửa lại đỡ mệt.
Cho \(\hept{\begin{cases}a,b,c\ge0\\b^2=\frac{a^2+c^2}{2}\end{cases}}\)
Chứng minh rằng: \(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)
Giải:
Theo đề ta có:
\(b^2=\frac{a^2+c^2}{2}\)
\(\Leftrightarrow b^2-a^2=c^2-b^2\)
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=\left(c+b\right)\left(c-b\right)\)
\(\Leftrightarrow\frac{b-a}{b+c}=\frac{c-b}{a+b}\)
Ta cần chứng minh:
\(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)
\(\Leftrightarrow\left(\frac{1}{a+b}-\frac{1}{c+a}\right)+\left(\frac{1}{b+c}-\frac{1}{c+a}\right)=0\)
\(\Leftrightarrow\frac{c-b}{\left(a+b\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\frac{b-a}{\left(b+c\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\frac{b-a+a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow0=0\)
Vậy....
Conan: bác mori ơi cháu biết hung thủ là ai rồi
Mouri : cái j , trẻ con đi chỗ khác chơi
Conan : hừ , lại phải dùng thuốc gây mê rồi , pặc
Mouri : á á :) , lại thế nữa rồi , á á
Conan : thanh tra megure ơi bác mouri nói đã tìm ra hung thủ rồi
megure : Thật không Mori , anh đã tìm ra hung thủ rồi à
Mouri : chính xác hung thủ chính là hắn :)
dự đoán của Mouri a=b=c=2
áp dụng BDT cô si ta có
\(VT\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{b^3+1}+\sqrt{c^3+1}+\sqrt{a^3+1}}.\)
áp dụng BDT cô si dạng shinra " mẫu số" ta có với Q= mẫu số
\(\sqrt{\left(b^3+1\right).9}\le\frac{b^3+1+9}{2}\)
\(\sqrt{\left(c^3+1\right).9}\le\frac{c^3+1+9}{2}\)
\(\sqrt{a^3+1.9}\le\frac{a^3+1+9}{2}\)
\(3Q\le\frac{1}{2}\left(a^3+b^3+c^3\right)+15.\)
có
\(a^3+8+8\ge3\sqrt[3]{a^32^32^3}=12a\)
\(b^3+8+8\ge12b\)
\(c^3+8+8\ge12c\)
\(a^3+b^3+c^3\ge72-48=24\)
\(3Q\le\frac{24}{2}+15=27\Leftrightarrow Q=9\)
thay vào VT ta được
\(VT\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{9}\)
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(a+b+c\right)+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(VT\ge\frac{6+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{9}\)
\(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\ge3\sqrt[3]{\sqrt{a^2b^2c^2}}=3\sqrt[3]{abc}\)
\(a+b+c\ge3\sqrt[3]{abc}\)
suy ra đươc \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=a+b+c=6\)
\(VT\ge\frac{6+2\left(6\right)}{9}=2\)
dấu = xảy ra khi a=b=c=2
Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:
\(VT=Σ_{cyc}\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\geΣ_{cyc}\frac{a}{\sqrt{\frac{\left(b+1+b^2-b+1\right)^2}{4}}}\)
\(=Σ_{cyc}\frac{2a}{b^2+2}\)\(=Σ_{cyc}\frac{2a^2}{ab^2+2a}\ge\frac{2\left(a+b+c\right)^2}{Σ_{cyc}ab^2+2\left(a+b+c\right)}\)
Cần c.minh \(\frac{2\left(a+b+c\right)^2}{Σ_{cyc}ab^2+2\left(a+b+c\right)}\ge2\)\(\Leftrightarrow\frac{36}{Σ_{cyc}ab^2+12}\ge1\)
Hay \(ab^2+bc^2+ca^2\le24\)\(\Leftrightarrow\)\(\left(a+b+c\right)^3\ge9\left(ab^2+bc^2+ca^2\right)\left(☺\right)\)
\(VT_{\left(☺\right)}\ge3\left(a+b+c\right)\left(ab+bc+ac\right)\ge9\left(ab^2+bc^2+ca^2\right)\) (vì \(\left(Σa\right)^2\ge3\left(Σab\right)\))
\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)\ge3\left(ab^2+bc^2+ca^2\right)\)
Tự c.m nốt gợi ý: \(a^2b+b^2c+c^2a-\)\(\left(ab^2+bc^2+ca^2\right)\)\(=\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{3}\)
Và \(3abc-\left(ab^2+bc^2+ca^2\right)=ab\left(c-b\right)+bc\left(a-c\right)+ac\left(b-a\right)\)
bđt cần c/m tương đương với:
\(\left(\frac{b+c}{\sqrt{a}}+\sqrt{a}\right)+\left(\frac{a+c}{\sqrt{b}}+\sqrt{b}\right)+\left(\frac{a+b}{\sqrt{c}}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\\ \ \)\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
Mặt khác:
\(a+b+c\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}\)
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
=> \(VT\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Ta cần c/m:
\(3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
<=> \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)(BĐt Cô-si)
xong rồi bạn nhé
đề sai đúng không mn?