K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

\(VT=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{\left(b-a\right)-\left(c-a\right)}{\left(b-a\right)\left(c-a\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(c-b\right)\left(a-b\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}\)

\(=\frac{1}{c-a}-\frac{1}{b-a}+\frac{1}{a-b}-\frac{1}{c-b}+\frac{1}{b-c}-\frac{1}{a-c}\)

\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=VP\left(đpcm\right)\)

19 tháng 2 2017

1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)

CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)

Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Thay vào biểu thwusc M ta được M=3abc (ĐPCM)

2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó

Nếu không thấy thì em có thể quy đồng lên mà rút gọn

20 tháng 2 2017

vâng e cảm ơn anh 

1 tháng 12 2019

Giả sử:

\(a>b>c\Rightarrow a-b>0,b-c>0,a-c>0\)

Ta có:

\(\hept{\begin{cases}a^2+b^2+c^2\ge a^2+c^2\\\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}\ge\frac{\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2}{2}\ge\frac{8}{\left(a-c\right)^2}\end{cases}}\)

Từ đây ta có:

\(VT\ge\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\)

Ta chứng minh

\(\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+c\right)^2\ge0\)(Đúng)

Vậy ta có điều phải chứng minh là đúng. Dấu = xảy ra khi a = - c; b = 0 và các hoán vị của nó

20 tháng 2 2019

Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(b-a\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)

Chứng minh tương tự,ta được:

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\left(đpcm\right)\)

27 tháng 7 2019

a)Quy đồng hết lên:v

\(=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{ab\left(a-b\right)-bc\left(a-b+c-a\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{\left(a-b\right)\left(ab-bc\right)+\left(c-a\right)\left(ca-bc\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{b\left(a-b\right)\left(a-c\right)-c\left(a-c\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) (tắt xíu, ráng hiểu:v)

\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\) (đpcm)

b)(sai thì thôi, cái chỗ đẳng thức xảy ra ý) Đặt \(\frac{a}{b-c}=x;\frac{b}{c-a}=y;\frac{c}{a-b}=z\) (cho nó gọn, viết cho nó lẹ:v) theo câu a) suy ra \(xy+yz+zx=-1\) => \(2xy+2yz+2zx=-2\)

Ta cần chứng minh \(x^2+y^2+z^2\ge2\). Thêm 2xy + 2yz +2zx vào hai vế ta cần chứng minh:

\(x^2+y^2+z^2+2xy+2yz+2zx\ge2+2xy+2yz+2zx\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge2-2=0\) (luôn đúng)

Ta có đpcm. Đẳng thức xảy ra khi \(x+y+z=0\)