Cho 3 số a, b, c thuộc R* thỏa mãn điều kiện: a + b + c = 1 và 1/a + 1/b + 1/ c =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2024

Lời giải:

Từ điều kiện đề bài suy ra:

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow \frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0$

$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$

$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$

$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$

$\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0$

$\Rightarrow (a+b)(c+a)(c+b)=0$

$\Rightarrow (1-c)(1-b)(1-a)=0$

$\Rightarrow 1-c=0$ hoặc $1-b=0$ hoặc $1-a=0$

$\Leftrightarrow a=1$ hoặc $b=1$ hoặc $c=1$ (đpcm)

27 tháng 3 2019

b) \(\left(1+a\right).\frac{1}{1+b^2}=\left(1+a\right)\left(1-\frac{b^2}{1+b^2}\right)\)

\(\ge\left(1+a\right)\left(1-\frac{b^2}{2b}\right)=1+a-\frac{ab+b}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế được:

\(VT\ge6-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}\)

\(=6-\frac{3+3}{2}=3^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

8 tháng 10 2019

a) \(a,b>0\Rightarrow a^3-b^3< a^3+b^3\)

Mà \(a^3+b^3=a-b\)

\(\Rightarrow a^3-b^3< a-b\)

\(\Rightarrow\frac{a^3-b^3}{a-b}< 1\)

\(\Leftrightarrow\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}< 1\)

\(\Leftrightarrow a^2+ab+b^2< 1\)

\(\Rightarrow a^2+b^2< 0\)(Vì a,b > 0)

b) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath

22 tháng 9 2019

Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo cách làm tương tự nhé!

30 tháng 4 2020

link nào ạ

22 tháng 9 2019

Em tham khảo cách làm tương tự như link  dưới:

Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath

22 tháng 9 2019

Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo cách làm như link trên!