Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay a+b+c=2017 vào \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\) ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)\(\Rightarrow\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{c\left(b+c\right)+ca+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+ca+ab\right]=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+a\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\)\(a+b=0\) hoặc \(b+c=0\) hoặc \(c+a=0\)
\(\Rightarrow\)\(c=2017\)hoặc \(a=2017\) hoặc \(b=2017\left(đpcm\right)\)
Lời giải:
Từ điều kiện đề bài suy ra:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow \frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0$
$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$
$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$
$\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0$
$\Rightarrow (a+b)(c+a)(c+b)=0$
$\Rightarrow (1-c)(1-b)(1-a)=0$
$\Rightarrow 1-c=0$ hoặc $1-b=0$ hoặc $1-a=0$
$\Leftrightarrow a=1$ hoặc $b=1$ hoặc $c=1$ (đpcm)
Câu hỏi của 『-Lady-』 - Toán lớp 8 - Học toán với OnlineMath
Tham khảo ở link trên nha
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)
\(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)( do a + b + c = 2017 )
\(\Rightarrow\left(a+b+c\right)\left(bc+ac+ab\right)=abc\)
\(\Leftrightarrow\left(bc+ac\right)\left(a+b+c\right)+ab\left(a+b\right)+abc-abc=0\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(c+a\right)+c\left(c+a\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Ta có : hoặc a+b =0
hoặc b+c =0
hoặc c+a = 0
Mà \(a+b+c=2017\)
\(\Rightarrow\)hoặc a = 2017; hoặc b = 2017 ; hoặc c = 2017
Vậy ...
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow x+y+z=0\)
Ta có
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
=> ĐPCM
\(a+b+c=2020\Rightarrow\frac{1}{a+b+c}=\frac{1}{2020}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a\left(ab+ac\right)+abc-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a^2\left(b+c\right)=0\)
\(\Leftrightarrow\left(ab+bc+ac+a^2\right)\left(b+c\right)=0\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Nếu a + b = 0 thì c = 2020
Nếu b + c = 0 thì a = 2020
Nếu a + c = 0 thì b = 2020
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)=abc\)
\(\Rightarrow a^2b+a^2c+abc+ab^2+abc+b^2c+abc+ac^2+bc^2=abc\)
\(\Rightarrow...\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(TH1:a=-b\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a}-\frac{1}{a}+\frac{1}{c}=\frac{1}{c}\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\Rightarrow\frac{1}{c}=\frac{1}{2020}\Leftrightarrow c=2020\)
Các trường hợp kia tương tự
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2\frac{1}{ab}+2\frac{1}{bc}+2\frac{1}{ac}\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
\(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=0\\ 2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=0\)
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=0\\ \frac{abc^2+a^2bc+ab^2c}{a^2b^2c^2}=0\)
\(abc^2+a^2bc+ab^2c=0\\ abc\left(c+a+b\right)=0\)
\(a+b+c=0\)(DPCM)