K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

\(a^3\) + \(b^3\) + \(c^3\) = \(\left(a+b+c\right)^3\) + 3 ( a + b ) (b + c )( c + a)

-> 1 = 1 + 3 ( a + b) ( b + c ) ( c + a )

-> ( a + b ) ( b + c ) ( c + a) = 0

-> ( 1- a ) ( 1 - b) ( 1 -c ) = 0

Tôn tại ít nhất một số 1 

Mà  a + b + c = 0 -> có hai số đối nhau

-> a2005+b2005 +c2005 =1 = 1 ( 2005 là số lẻ )

Tk mk nha

11 tháng 8 2019

\(\hept{\begin{cases}a+b=c+d\Rightarrow\left(a+b\right)^2=\left(c+d\right)^2\Rightarrow a^2+2ab+b^2=c^2+2cd+d^2\\a^2+b^2=c^2+d^2\end{cases}}\)

\(\Rightarrow2ab=2cd\Rightarrow ab=cd\Rightarrow\frac{a}{d}=\frac{b}{c}=k\Rightarrow\hept{\begin{cases}a=dk\\b=ck\end{cases}}\)

Xét \(a^2+b^2=c^2+d^2\Leftrightarrow\left(dk\right)^2+b^2=\left(ck\right)^2+d^2\Leftrightarrow d^2\left(k^2-1\right)=b^2\left(k^2-1\right)\)

\(\Leftrightarrow\left(d^2-b^2\right)\left(k^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}d^2-b^2=0\\k^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}d=\pm b\\k=\pm1\end{cases}}\Rightarrow\orbr{\begin{cases}a=\pm c\\a=\pm d;c=\pm b\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}d^{2005}=b^{2005};a^{2005}=c^{2005}\\a^{2005}=d^{2005};c^{2005}=b^{2005}\end{cases}\Rightarrow\orbr{\begin{cases}a^{2005}+b^{2005}=c^{2005}+d^{2005}\\a^{2005}+b^{2005}=c^{2005}+d^{2005}\end{cases}}}\)

\(\Rightarrow a^{2005}+b^{2005}=c^{2005}+d^{2005}\left(đpcm\right)\)

17 tháng 6 2018

2:

a) Cách 1:

S = 2 + 22 + 23 + 24 + ... + 22018

2S = 22 + 23 + 24 + 25 + ... + 22019

Suy ra: S = 22019 - 2

Cách 2:

S = 2 + 22 + 23 + 24 + ... + 22018

= 111...1(2) (2019 chữ số 1)

26 tháng 10 2018

Bài 1:

a) \(100^2-99^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+...+2+1\)

=> tự làm tiếp :))

b) tương tự

Bài 2 :

a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\)

\(A=2^{16}-1< 2^6=B\)

b) Phân tích \(2004\cdot2006=\left(2005-1\right)\left(2005+1\right)=\left(2005^2-1\right)\)rồi áp dụng hđt thứ 3 tự làm tiếp như câu a)

Bài 3:

a) Cứ khai triển hết ra 

b) \(a^2+b^2+c^2=ab+bc+ac\)

\(a^2+b^2+c^2-ab-bc-ac=0\)

Nhân 2 vào cả 2 vế được :

\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+c^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

mà mũ 2 luôn lớn hơn hoặc bằng 0

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c\left(đpcm\right)}\)

P.s: toàn bài nâng cao làm hơi ẩu tí ^^

10 tháng 7 2016

Bạn sửa lại đề bài câu 2) nhé ^^

2) \(a+b+c+d=0\Leftrightarrow a+b=-c-d\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-\left[c^3+d^3+3cd\left(c+d\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3cd\left(c+d\right)-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\)

10 tháng 7 2016

đề đúng ak bạn

18 tháng 8 2018

a)   \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)

\(=2004.\left(2005^2+2006\right)\)\(⋮\)\(2004\)

b) \(B=2005^3+125^3=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)

\(=2010.\left(2005^2-2005.5+5^2\right)\)\(⋮\)\(2010\)

18 tháng 8 2018

a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)

                                  \(=2004.\left(2005^2+2005+1\right)\) chia hết cho 2004

Áp dụng hằng đẳng thức: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

b) \(2005^3+125=2005^3+5^3=\left(2005+5\right)\left(2005^2-2005.5+25\right)\)

                                                          \(=2010.\left(2005^2-2005.5+25\right)\) chia hết cho 2010

Áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)