Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
R=R1+R2=25\(\Omega\)
\(\Rightarrow I=\frac{U}{R}=0,24A\)
mà I=I1=I2
\(\Rightarrow U_1=I_1R_1=2,4V\)
\(\Rightarrow U_2=U-U_1=3,6V\)
Trong mạch nối tiếp, ta có:
U = U1 + U2 = IR1 + IR2 = I(R1 + R2).
Mặt khác, U = IRtđ. Từ đó suy ra: Rtđ = R1 + R2.
a. \(R_{23}=\dfrac{R_2.R_3}{R_2+R_3}=\dfrac{15.10}{15+10}=6\) (ôm)
\(\Rightarrow R_{tđ}=R_{23}+R_1=6+9=15\)(ôm)
b. Vì \(R_2\)//\(R_3\Rightarrow U_2=U_3\Leftrightarrow15I_2=10I_3\)
\(\Rightarrow I_3=\dfrac{15I_2}{10}=\dfrac{15.0,2}{10}=0,3\)(A)
\(\Rightarrow I_1=I_2+I_3=0,2+0,3=0,5\)(A)
c. ta có \(I=I_1=0,5\)
\(\Rightarrow U=I.R_{tđ}=0,5.15=7,5\)(V)
bn tự tóm tắt nhé
Giải
a,Ta có ( R2//R3)ntR1
nên Rtđ=\(\dfrac{R_2.R_3}{R_2+R_3}+R_1\)=\(\dfrac{15.100}{15+100}+9=\dfrac{507}{23}A\)
b,HĐT giữa hai đầu R2 là :
U2=I2.R2=0,2.15=3V
Ta lại có R2 //R3 =>U2=U3=3V
c đ d đ chạy qua R3 là :
I3=\(\dfrac{U_3}{R_3}=\dfrac{3}{100}=0,03A\)
=> \(I_1=I_2+I_3=0,2+0,03=0,23A\)
c, HĐT giữa 2 đầu R1,R23 là :
U1=I1.R1=0,23.9=2,07V
U23=I23.R23=0,23.\(\dfrac{15.100}{15+100}\)=\(\dfrac{39}{23}V\)
=> UAB = U1+U23=2,07+\(\dfrac{39}{23}\)\(\approx3,766V\)
Ta gọi R=R1=R2=R3=x
Ta có R//R1
x. x/x+x=x/2
R2//R3
x. x/x+x=x/2
Ta lại có
RR1//R23
(x/2.x/2)/(x/2+x/2)
=(x2/4)÷x=(x2/4).1/x
=x/4
Vậy Rtđ của đoạn...
ta có :
\(R_{t\text{đ}}=\left(\dfrac{R_2\cdot R_3}{R_2+R_3}\right)+R_1\)
\(=\dfrac{R^2}{2R}+R\) =\(=\dfrac{R^2}{2R}+\dfrac{2R^2}{2R}\)=\(\dfrac{3R^2}{2R}\)
Từ đề bài ta có :
\(\dfrac{3R^2}{2R}=120\)
Giải phương trình được:
R = 80Ω
Bài làm:
Sơ đồ mạch điện là: \(\left(R_2\text{/}\text{/}R_3\right)ntR_1\)
Từ sơ đồ mạch điện nên: \(\Rightarrow R_{23}=\dfrac{R_2\cdot R_3}{R_2+R_3}=\dfrac{R^2}{2R}=\dfrac{R}{2}\left(\Omega\right)\)
\(\Rightarrow R_{TĐ}=R_{23}+R_1=\dfrac{R}{2}+R\left(\Omega\right)\)
Mà: \(R_{TĐ}=120\left(\Omega\right)\)
\(\Rightarrow\dfrac{R}{2}+R=120\Rightarrow R=80\left(\Omega\right)\)
Vậy ...................................
a) Rtd= \(\frac{1}{R_1}+\frac{1}{R_2}\)= \(\frac{1}{15}+\frac{1}{10}\)=6 \(\Omega\)
b) I=\(\frac{U}{R}\)(định luật ôm)=\(\frac{18}{6}\)=3(A)
Tóm tắt :
\(R_1//R_2\)
R1 = 6Ω
Rtđ = 3Ω
R2 =?
GIẢI :
Cthức : \(R_{tđ}=\frac{R_1R_2}{R_1+R_2}\)
Thay số : \(3=\frac{6.R_2}{6+R_2}\)
\(\Leftrightarrow6R_2=18+3R_2\)
=> A. \(R_2=6\Omega\)
\(\dfrac{1}{R_{td}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}\Rightarrow R_{td}=\dfrac{10}{3}\Omega\)
Vì `R1` // `R_2` // `R_3`
`->1/(R_td)=1/R_1+1/R_2+1/R_3`
`->1/(R_td)=1/10+1/10+1/10`
`->1/(R_td)=3/10`
`->R_(td)=10/3 (\Omega)`