Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Q là mặt phẳng đi qua A và song song với (P) thì phương trình của (Q) là \(\left(x+2\right)+2\left(y+1\right)-\left(z-1\right)=0\) hay \(x+2y-z+5=0\). Gọi H là hình chiếu vuông góc của B lên (Q). Giả sử \(\Delta\) là đường thẳng qua A và song song với
Có hai trường hợp xảy ra:
Trường hợp 1:
(P) đi qua A, song song với hai đường thẳng d và BC. Vectơ chỉ phương của d là v → (-3; -1; 2) và BC → (-2; 4; 0).
Do đó n P → = v → ∧ BC → = (-8; -4; -14).
Phương trình mặt phẳng (P) là: -8(x - 1) - 4(y - 2) - 14(z - 1) = 0 hay 4x + 2y + 7z - 15 = 0
Trường hợp 2:
(P) đi qua A, đi qua trung điểm F(1; 1; 1) của BC, và song song với d.
Ta có: FA → (0; 1; 0), FA → ∧ v → = (2; 0; 3).
Suy ra phương trình của (P) là: 2(x - 1) + 3(z - 1) = 0 hay 2x + 3z - 5 = 0.
Mặt phẳng (P) qua A và vuông góc d có phương trình:
\(2\left(x-1\right)+2\left(y+1\right)+1\left(z-1\right)=0\)
\(\Leftrightarrow2x+2y+z-1=0\)
Đường thẳng d' song song d và đi qua B (nên d' vuông góc (P)) có dạng:
\(\left\{{}\begin{matrix}x=4+2t\\y=2+2t\\z=-2+t\end{matrix}\right.\)
\(\Rightarrow\) Giao điểm C của d' và (P) thỏa mãn:
\(2\left(4+2t\right)+2\left(2+2t\right)-2+t-1=0\Rightarrow t=-1\Rightarrow C\left(2;0;-3\right)\)
\(\Rightarrow\overrightarrow{AC}=\left(1;1;-4\right)\Rightarrow\) là 1 vtcp của \(\Delta\Rightarrow\) D là đáp án đúng
a. Từ giả thiết ta có \(\overrightarrow{AB}=\left(1;-6;-5\right)\) và \(\overrightarrow{CA}=\left(1;2;1\right)\)
Suy ra :
\(\left|\overrightarrow{AB;}\overrightarrow{CA}\right|=\left(\left|\begin{matrix}-6&-5\\2&1\end{matrix}\right|;\left|\begin{matrix}-5&1\\1&1\end{matrix}\right|;\left|\begin{matrix}1&-6\\1&2\end{matrix}\right|\right)\)
Từ đó do \(\left[\overrightarrow{AB;}\overrightarrow{CA}\right]\ne\overrightarrow{0}\) nên A, B, C không thẳng hàng và mặt phẳng (P) đi qua A,B,C có vecto pháp tuyến \(\overrightarrow{n}=\frac{1}{2}\left[\overrightarrow{AB;}\overrightarrow{CA}\right]=\left(2;-3;4\right)\)
Suy ra (P) có phương trình:
\(2\left(x-3\right)-3\left(y-3\right)+4\left(z-2\right)=0\)
hay :
\(2x-3y+4z-5=0\)
b. Do \(OD=\sqrt{1^2+2^2+1^2}=\sqrt{6}\) nên \(S_{\Delta ODE}\) bé nhất khi và chỉ khi \(d\left(E;OD\right)\) bé nhất.
(P) F E O X D
\(\overrightarrow{OD}.\overrightarrow{n}=1.2.\left(-3\right)+1.4\) và\(1.2+2\left(-3+1.4-5\ne0\right)\) nên \(OD\backslash\backslash\left(P\right)\). Bởi vậy tập hợp tất cả những điểm \(E\in\left(P\right)\) sao cho \(d\left(E;OD\right)\) bé nhất là OD trên mặt phẳng (P)
Gọi d là đường thẳng đi qua O và vuông góc với (P). Khi đó d có phương trình :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{4}\)
Gọi M là hình chiếu của O(0;0;0) trên (P). Khi đó tọa độ của M thỏa mãn hệ phương trình :
\(\begin{cases}\frac{x}{2}=\frac{y}{-3}=\frac{z}{4}\\2x-3y+4z-5=0\end{cases}\)
Giải hệ ta được : \(M\left(\frac{10}{29};\frac{-15}{29};\frac{20}{29}\right)\)
Vậy tập hợp tất cả các điểm E cần tìm là đường thẳng đi qua M, song song với OD, do đó có phương trình dạng tham số :
\(\begin{cases}x=\frac{10}{29}+t\\y=-\frac{15}{29}+2t\\z=\frac{20}{29}+t\end{cases}\) \(\left(t\in R\right)\)
a) Phương trình đường thẳng d có dạng: , với t ∈ R.
b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương
(1 ; 1 ; -1) vì là vectơ pháp tuyến của (α).
Do vậy phương trình tham số của d có dạng:
c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆ nên cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:
d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương
(4 ; 2 ; -1) nên phương trình tham số có dạng:
\(d\left(A,\left(\alpha\right)\right)=\frac{4}{3}\)
\(\left(\beta\right)\)//\(\left(\alpha\right)\) nên phương trình \(\left(\beta\right)\) có dạng : \(x+2y-2z+d=0,d\ne-1\)
\(d\left(A,\left(\alpha\right)\right)=d\left(A,\left(\beta\right)\right)\)\(\Leftrightarrow\frac{\left|5+d\right|}{3}=\frac{4}{3}\Leftrightarrow\begin{cases}d=-1\\d-9\end{cases}\)\(\Leftrightarrow d=-9\left(d=-1loai\right)\)\(\Rightarrow\left(\beta\right):x+2y-2z-9=0\)