Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 38-3n : n =-3+38/n vậy n là Ư(38) nên n = 1 ; 2 ; 19 ; 38
b) ( n+5 ) : ( n + 1 ) hay ( n +1 + 4 ) : (n+1) vậy n+1 là Ư(4) nên n+1 = 1 ; 2 ; 4. Vậy n = 0;1;3
c) ( 3n + 4 ) :( n + 1 ) hay ( 3n + 1 + 3 ) : ( n + 1 ) vậy n + 1 là Ư(3) nên n + 1 = 1;3. Vậy n = 0;2
d) ( 2n + 1 ) : ( 16 - 3n ) hay 3(2n+1) : ( 16 - 3n ) hay 3(2n + 1 ) : 2(16 - 3n ) hay ( 6n + 3 ) : ( 32 - 6n ). Vậy ( 6n + 3 + 32 - 6n ) chia hết cho 16 - 3n hay 35 chia hết cho ( 16 - 3n ). 16 - 3n là Ư ( 35 ). Vậy 16 -3n = 1;5;7;35. n = 5;3 là thích hợp.
1)a)2n+1 chia hết cho 5
=>2n+1 có tận cùng là 0 hoặc 5
2n+1 tận cùng là 0=>2n tận cùng là 9(L)
2n+1 tận cùng là 5=>2n tận cùng là 4
=>n là số tự nhiên có tận cùng là 2
b)2n+1 chia hết cho 5
=>4(2n+1) chia hết cho5
Mà 4(2n+1)=8n+4=3n+4+5n
Do 3n+4+5n chia hết cho 5
5n chia hết cho5
=>3n+4 chia hết cho 5(ĐPCM)
a) ta có: 4n + 5 chia hết cho n
mà 4n chia hết cho n
=> 5 chia hết cho n
=> n thuộc Ư(5)={1;5} ( n là STN)
b) ta có: n + 5 chia hết cho n + 1
=> n + 1 + 4 chia hết cho n + 1
mà n + 1 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4)={1;-1;2;-2;4;-4}
...
bn tự xét nha
c) ta có: 3n + 4 chia hết cho n - 1
=> 3n - 3 + 7 chia hết cho n -1
3.(n-1) + 7 chia hết cho n -1
...
1/ Gọi 3 số nguyên liên tiếp đó là a; a + 1; a + 2
Trong 3 số nguyên liên tiếp có ít nhất 1 số chia hết cho 3, ta cho số đó là a
Ta có: a + a + 1 + a + 2 = a + a + a + 1 + 2 = 3a + 3
mà 3a và 3 chia hết cho 3
=> Tổng 3 số nguyên liên tiếp chia hết cho 3 (điều cần chứng minh)
2n +1 ⋮ n-2
n+n+1⋮n-2
n+n-2-2+5⋮n+2
2(n-2)+5 ⋮ n-2
⇒ 5 ⋮ n- 2
hay n-2 ∈ Ư(5)={1;5;-1;-5}
⇒ n ∈ { 3,7,1,-3 }
Vậy n = 3,7,1,-3
a) => 2n+1 thuộc Ư(15) = {-1,-3,-5,-15,1,3,5,15}
Ta có bảng :
2n+1 | -1 | -3 | -5 | -15 | 1 | 3 | 5 | 15 |
n | -1 | -2 | -3 | -8 | 0 | 1 | 2 | 7 |
Vậy n= {-8,-3,-2,-1,0,1,2,7}
b) \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}=1+\frac{3}{n+1}\)
=> n+1 thuộc Ư(3) = {-1,-3,1,3}
Ta có bảng :
n+1 | -1 | -3 | 1 | 3 |
n | -2 | -4 | 0 | 2 |
Vậy n= {-4,-2,0,2}
c) \(\frac{n+5}{n-1}=\frac{n-1+6}{n-1}=\frac{n-1}{n-1}+\frac{6}{n-1}=1+\frac{6}{n-1}\)
=> n-1 thuộc Ư(6) = {-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n-1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | 0 | -1 | -2 | -5 | 2 | 3 | 4 | 7 |
Vậy n={-5,-2,-1,0,2,3,4,7}
2n+1 chia hết cho 5
=> 3(2n+1)chia hết cho 5
=> 6n+3 chia hết cho 5
=> (6n+3)+5 chia hết cho 5 vì 5 chia hết cho 5
=> 6n+8 chia hết cho 5
=> 2(3n+4)chia hết cho 5
=> 3n+4 chia hết cho 5
Vậy 3n+4 chia hết cho 5