Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho biểu thức sau:$\frac{2a+b+c+d}{a}$2 a + b + c + d a bam vao do nho bam lik e :\
Ta co :
a/b = b/c = c/d = d/a = (a+b+c+d)/(b+c+d+a) = 1
=> a = b = c = d
A = (2a-b)/(c+d) + (2b-c)/(d+a) + (2c-d)/(a+b) + (2d-a)/(b+c)
= a/2a + a/2a + a/2a + a/2a = 1/2 + 1/2 + 1/2 + 1/2
= 2
Vậy.......................
nho**** nhe thanks
Ta có:\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2c}{a+b+c+d}=4\)
=>2a+b+c+d=4a
=>2a=b+c+d
Tương tự ta có:2b=a+c+d
2c=a+b+d
2d=a+b+c
=>2a+2b=b+c+d+a+c+d=>a+b+2c+2d
=>a+b=2c+2d
=>a+b/c+d=2
Tương tự ta có:b+c/d+a=2
c+d/a+b=2
d+a/b+c=2
=>M=2+2+2+2=8
Ta có\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
=> \(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Khi a + b + c + d = 0
=> a + b = -(c + d)
b + c = -(a + d)
Khi đó \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{a+d}{b+c}\)
\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{a+d}{-\left(a+d\right)}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)= -4
Nếu a + b + d + d \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{2a}{2a}+\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}=1+1+1+1=4\)
Vậy khi a + b + c + d = 0 => M = -4
khi a + b + c + d \(\ne\)0 => M = 4
Đề bài: Cho dãy tỉ số bằng nhau:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
Tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Bài làm
Cùng trừ mỗi tỉ số trên đi 1 đơn vị ta được:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Từ đây ta suy ra 2 trường hợp:
+ Trường hợp 1:
Nếu a + b + c + d \(\notin0\) => a = b = c = d
=> M = 1 + 1 + 1 + 1 = 1 . 4 = 4
+ Trường hợp 2:
Nếu a + b + c + d = 0 thì
_a + b = - ( c + d ) ; b + c = - ( d + a )
_ c + d = - ( a + b ) ; d + a = - ( b + c )
Do đó: M = ( -1 ) + ( - 1 ) + ( - 1 ) + ( - 1) = -4
Bạn ơi giải thích cho mình chỗ a+b= -(c+d) được k? Mình vẫn không hiểu lắm!
* TH1: a + b + c + d \(\ne\)0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}\)
\(=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)
\(\Rightarrow2a+b+c+d=5a;a+2b+c+d=5b\)
\(\Rightarrow b+c+d=3a;a+c+d=3b\)
\(\Rightarrow b+c+d+a+c+d=3a+3b\)
\(\Rightarrow\left(a+b\right)+2\left(c+d\right)=3\left(a+b\right)\)
\(\Rightarrow2\left(c+d\right)=2\left(a+b\right)\)
\(\Rightarrow c+d=a+b\)
CMTT ta được: \(b+c=a+d\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
* TH2: \(a+b+c+d=0\)
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right)\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)\(=-4\)
Vậy ...