Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
\(x^2+2=mx+3\Leftrightarrow x^2-mx-1=0\)
\(ac=-1< 0\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt A, B có hoành độ trái dấu, giả sử A là điểm có hoành độ âm
Diện tích hình phẳng:
\(S=\int\limits^{x_B}_{x_A}\left(mx+3-x^2-2\right)dx=\frac{1}{2}mx_B^2+x_B-\frac{1}{3}x_B^3-\frac{1}{2}mx_A^2-x_A+\frac{1}{3}x_A^3\)
\(=\left(x_B-x_A\right)\left(\frac{1}{2}m\left(x_A+x_B\right)+1-\frac{1}{3}\left(\left(x_A+x_B\right)^2-x_Ax_B\right)\right)\)
\(=\left(x_B-x_A\right)\left(\frac{1}{2}m^2+1-\frac{1}{3}\left(m^2+1\right)\right)=\frac{1}{6}\left(m^2+4\right)\left(x_B-x_A\right)\)
\(=\frac{1}{6}\left(m^2+4\right)\sqrt{m^2+4}\ge\frac{4}{3}\)
\(\Rightarrow S_{min}\) khi \(m=0\Rightarrow x^2-1=0\Rightarrow\left\{{}\begin{matrix}x_A=-1\Rightarrow y_A=3\\x_B=1\Rightarrow y_B=3\end{matrix}\right.\)
\(\Rightarrow P=18\)
\(y'=-6x^2-6\left(2a+1\right)x-6a\left(a+1\right)\)
\(y'=0\Leftrightarrow x^2+\left(2a+1\right)x+a\left(a+1\right)=0\)
\(\Delta=\left(2a+1\right)^2-4a\left(a+1\right)=1>0\forall a\)
Ta có \(x_1+x_2=-\left(2a+1\right)\) và \(x_1x_2=a\left(a+1\right)\) (theo Vi-ét)
\(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=...\)
Sai đề bạn ơi
Sao bạn nghĩ là sai đề ?