K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 4 2019

Phương trình hoành độ giao điểm:

\(x^2+2=mx+3\Leftrightarrow x^2-mx-1=0\)

\(ac=-1< 0\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt A, B có hoành độ trái dấu, giả sử A là điểm có hoành độ âm

Diện tích hình phẳng:

\(S=\int\limits^{x_B}_{x_A}\left(mx+3-x^2-2\right)dx=\frac{1}{2}mx_B^2+x_B-\frac{1}{3}x_B^3-\frac{1}{2}mx_A^2-x_A+\frac{1}{3}x_A^3\)

\(=\left(x_B-x_A\right)\left(\frac{1}{2}m\left(x_A+x_B\right)+1-\frac{1}{3}\left(\left(x_A+x_B\right)^2-x_Ax_B\right)\right)\)

\(=\left(x_B-x_A\right)\left(\frac{1}{2}m^2+1-\frac{1}{3}\left(m^2+1\right)\right)=\frac{1}{6}\left(m^2+4\right)\left(x_B-x_A\right)\)

\(=\frac{1}{6}\left(m^2+4\right)\sqrt{m^2+4}\ge\frac{4}{3}\)

\(\Rightarrow S_{min}\) khi \(m=0\Rightarrow x^2-1=0\Rightarrow\left\{{}\begin{matrix}x_A=-1\Rightarrow y_A=3\\x_B=1\Rightarrow y_B=3\end{matrix}\right.\)

\(\Rightarrow P=18\)

17 tháng 12 2016

\(y'=-6x^2-6\left(2a+1\right)x-6a\left(a+1\right)\)

\(y'=0\Leftrightarrow x^2+\left(2a+1\right)x+a\left(a+1\right)=0\)

\(\Delta=\left(2a+1\right)^2-4a\left(a+1\right)=1>0\forall a\)

Ta có \(x_1+x_2=-\left(2a+1\right)\)\(x_1x_2=a\left(a+1\right)\) (theo Vi-ét)

\(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=...\)

17 tháng 12 2016

nếu làm như vậy là đề của mình cho sai chỗ -6a (a+1)thiếu biến x. làm mình giải không đươc. cô thầy in đề kiểu này bắt học sinh giải

21 tháng 7 2016

hep