\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

Giả sử a1, a2, ..., a2017 là 2017 số khác nhau. 

Và0 < a1 < a2 ... < a2017

Vì là số nguyên dương nên ta có

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2017}\)

\(< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+\frac{2016}{2}=1009\)

Từ đây ta thấy rằng nếu như 2017 số đó là khác nhau thì tổng luôn < 1009 vậy nên để tổng đó bằng 1009 thì phải có ít nhất 2 trong 2017 số đó bằng nhau

26 tháng 5 2020

có bạn nào làm được bài này theo nguyên lí Đi - rich - lê ko 

12 tháng 8 2016

Giả sử trong 2015 số đã cho không có hai số nào bằng nhau, không mất tính tổng quát ta giả sử 

\(a_1< a_2< ...< a_{2015}\)

Vì \(a_1,a_2,...,a_{2015}\) đều là số nguyên dương nên ta suy ra

\(a_1\ge1;a_2\ge2;...;a_{2015}\ge2015\)

Suy ra 

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+...+\frac{1}{2015}\right)\)

\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)

Mâu thuẫn với giả thiết

Do đó điều giả sử là sai

Vậy trong 2015 số đã cho phải có ít nhất 2 số bằng nhau

12 tháng 8 2016

quen quá lolang

9 tháng 11 2019

Câu hỏi của 『-Lady-』 - Toán lớp 8 - Học toán với OnlineMath

Tham khảo ở link trên nha

14 tháng 3 2018

Thay a+b+c=2017 vào \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)  ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)\(\Rightarrow\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left(a+b\right)\left(\frac{c\left(b+c\right)+ca+ab}{abc\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+ca+ab\right]=0\)

\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+a\left(b+c\right)\right]=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow\)\(a+b=0\) hoặc \(b+c=0\) hoặc \(c+a=0\)

\(\Rightarrow\)\(c=2017\)hoặc \(a=2017\) hoặc \(b=2017\left(đpcm\right)\)

18 tháng 11 2016

Giả sử không có 2 số nào bằng nhau. Coi \(a_1>a_2>a_3>...>a_{2016}>a_{2017}\)

Do \(a_1;a_2;...;a_{2017}\in Z_+\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1009\)( Vô lý)

Do đó có ít nhất 2 số bằng nhau.

21 tháng 4 2017

giai ho minh voi

11 tháng 8 2018

Ta có :  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)

\(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)( do a + b + c = 2017 )

\(\Rightarrow\left(a+b+c\right)\left(bc+ac+ab\right)=abc\)

\(\Leftrightarrow\left(bc+ac\right)\left(a+b+c\right)+ab\left(a+b\right)+abc-abc=0\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(c+a\right)+c\left(c+a\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Ta có : hoặc a+b =0

            hoặc b+c =0

           hoặc c+a = 0 

Mà  \(a+b+c=2017\)

\(\Rightarrow\)hoặc a = 2017; hoặc b = 2017 ; hoặc c = 2017

Vậy ...