Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2016 số này khác nhau từng đôi 1 ta có
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\)
\(< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{7}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\)(2009 số \(\frac{1}{8}\))
\(=1+\frac{1}{2}+...+\frac{1}{7}+\frac{2009}{8}\)
\(=\frac{363}{140}+\frac{2009}{8}\approx253,72< 300\)
Vậy trong 2016 số đã cho tồn tại ít nhất 2 số bằng nhau
Có vẻ thiếu cái gì đó. khi có hai số bằng nhau rồi. g/s là a2015=a2016
Liệu P trình : 1/a1+...+1/a2015=B có tồn tại Nghiệm nguyên
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_8}{a_9}=\frac{a_9}{a_1}=\frac{a_1+a_2+...+a_8+a_9}{a_2+a_3+...+a_9+a_1}=1\)
\(\Rightarrow a_1=a_2=...=a_9\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_8}{a_9}=\frac{a_9}{a_1}=\frac{a_1+a_2+...+a_8+a_9}{a_2+a_3+..+a_9+a_1}=1\)
=> \(\frac{a_1}{a_2}=1\Rightarrow a_1=a_2\)
\(\frac{a_2}{a_3}=1\Rightarrow a_2=a_3\)
.....
\(\frac{a_8}{a_9}=1\Rightarrow a_8=a_9\)
\(\frac{a_9}{a_1}=1\Rightarrow a_9=a_1\)
=> \(a_1=a_2=..a_9\)
Giả sử trong 2000 số nguyên dương đã cho không có 2 số nào bằng nhau
\(a_1>a_2>a_3>...>a_{2000}\ge1\)
Khi đó ta có :
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2000}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}=8,1783...< 12\)
( Mâu thuẫn giả thiết )
Vậy trong 2000 số nguyên dương đã cho có ít nhất 2 số bằng nhau.