K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

Bài này sử dụng bất đẳng thức tam giác

Đặt vectơ AB = a vectơ BC = b

Ta có: \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\) hay \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\overrightarrow{AC}\)

Ta lại có: \(AB+BC\ge AC\) ( bđt tam giác )

Từ 2 điều trên ta suy ra đpcm \(\left|\overrightarrow{a}+\overrightarrow{b}\right|\le\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\)

18 tháng 8 2019

\(\overrightarrow{a}=1\Rightarrow3\overrightarrow{a}=3\)

\(\overrightarrow{b}=2\Rightarrow4\overrightarrow{b}=8\)

\(\overrightarrow{c}=3\overrightarrow{a}+4\overrightarrow{b}=\sqrt{3^2+8^2-2\cdot3\cdot8\cdot\cos\left(60\right)}=7\)

NV
22 tháng 11 2019

\(u.v=0\Leftrightarrow\left(2a+3b\right)\left(-15a+14b\right)=0\)

\(\Leftrightarrow-30a^2+42b^2-17ab=0\)

\(\Leftrightarrow ab=\frac{-30.4^2+42.3^2}{17}=-6\)

\(\Rightarrow cos\left(a;b\right)=\frac{ab}{\left|a\right|\left|b\right|}=-\frac{6}{12}=-\frac{1}{2}\Rightarrow\left(a;b\right)=120^0\)

NV
22 tháng 11 2019

\(A^2=\left|3a+5b\right|^2=9a^2+25b^2+30ab=9.1+25.1+30.3=124\)

\(\Rightarrow A=2\sqrt{31}\)